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BACKGROUND
BAYESIAN STATISTICS
• Bayesian statistics provides a framework 

for model selection, calibration and UQ
• for some model, !, Bayes’ theorem 

states: 
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BAYESIAN FRAMEWORK
FITTING A MODEL
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Polynomial Model:

Likelihood:

Priors:

Paulson 2018 
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BAYESIAN FRAMEWORK
SPECIALIZED METHODS
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Rescaling of Errors

Gelman 2014, Ma 2014, Paulson 2018 

Thermodynamic Consistency



BAYESIAN FRAMEWORK
THERMODYNAMIC CONSISTENCY
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BAYESIAN FRAMEWORK 
DATA WEIGHTING
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CASE STUDY
HAFNIUM METAL
• experimental thermodynamic measurements of !, " and liquid phase Hf
• 20 total datasets obtained

• 17 for !, 9 for ", 10 for liquid
• 14 for #$, 6 for %, 0 for &, 0 for '

• data corrected for temperature scale, Zr content
• reported error bars converted to standard errors (GUM)
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Goldberg 1992, GUM 1995, Arblaster 2013, Arblaster 2014, Paulson 2018 



CASE STUDY
MODEL SELECTION
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Model Log Marginal 
Likelihood Bayes' Factor

α phase
Einstein -1744.2 ~0
Debye -1262.9 ~0
Debye + Linear -1072.6 ~0
Debye + Quadratic -813.2 ~0
Debye + Cubic -640.2 ~0
Debye + Quartic -623.1 1
Debye + Quintic -627.4 1.4×10'(

Debye + SR -629.7 1.4×10')

β phase
Constant -534.2 ~0
Linear -511.1 3.0×10')

Quadratic -505.3 1
Cubic -518.5 1.9×10',

Liquid Phase
Constant -491.4 ~0
Linear -471.0 1
Quadratic -476.0 6.7×10')
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CASE STUDY FINAL MODEL
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Arblaster 2014, Paulson 2018 



CASE STUDY
FINAL MODEL

Investigate effect of removing individual 
datasets in Bayesian analysis:
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Paulson 2018 



CONCLUSIONS

• Comprehensive framework for model selection, calibration and 
UQ for thermodynamic property models

• Intuitive modifications address common issues
• ensuring thermodynamic consistency
• automated weighting of data sets

• Framework demonstrated in construction of models for !", #, $ and 
% of Hf metal for &, ' and liquid phases
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ABSTRACT
Models of the thermodynamic properties of materials form the basis for 
technological applications including the calculation of phase diagrams and 
simulation of microstructure evolution during processing – both of which play an 
important role in the design of materials for improved performance. Currently, the 
weighting of datasets, removal of outliers and the selection of model forms rely on 
expert judgements and do not provide uncertainty intervals. In this work we 
present a Bayesian framework for the selection, calibration and uncertainty 
quantification of thermodynamic property models. The framework is enabled by 
recent advances in numerical sampling methods. In addition, we present intuitive 
modifications that automatically weight datasets, improve robustness of outlier 
treatments, and ensure consistency of thermodynamically related models. We 
demonstrate the power of the approach through the construction of models for the 
specific heat, enthalpy, entropy and Gibbs free energy of Hafnium metal for the 
alpha, beta and liquid phases at temperatures ranging between 0 and 4900K.
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BAYESIAN FRAMEWORK
FITTING A MODEL
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MultiNestkombine



BAYESIAN FRAMEWORK
ROBUSTNESS TO OUTLIERS
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Likelihood:

Student’s t

d.o.f.

Gelman 2014



BAYESIAN FRAMEWORK
DATA WEIGHTING
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BAYESIAN FRAMEWORK
THERMODYNAMIC CONSISTENCY
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Priors:

Einstein Model

Likelihood:

Chen 2001



BAYESIAN FRAMEWORK
THERMODYNAMIC CONSISTENCY
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BAYESIAN FRAMEWORK
THERMODYNAMIC 
CONSISTENCY
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CASE STUDY
COMPUTATIONAL METHODOLOGY
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Sampling: 
pymultinest with 800 live points

Likelihood:
• Student’s t-distribution for robustness 

to outliers
• hyperparameters to rescale reported 

errors
• simultaneous regression for ! and "#

Prior Definition:
• Stage A: define broad uniform priors
• Stage B: narrow priors to 5-sigma 

Stage A – posterior

Model Selection:
marginal Likelihood



CASE STUDY FINAL MODEL
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Arblaster 2014, Paulson 2018 



CASE STUDY FINAL MODEL
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Paulson 2018 



GENERAL BAYESIAN REGRESSION

• Analytic Bayesian methods are difficult for non-linear models and non-
conjugate priors

• Markov chain Monte Carlo (MCMC) methods can accurately sample posterior
• Simplest algorithm: Metropolis-Hastings (M-H) (1953).

• Interactive visualization: https://chi-feng.github.io/mcmc-
demo/app.html#RandomWalkMH,standard

If !" #∗, # & > U 0, 1 then # &+, = #∗, 
else # &+, = # & !" #∗, # & = ./ #∗

./ # &

Propose random step in parameter space from # & to #∗
according to proposal distribution 0" # # &
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https://chi-feng.github.io/mcmc-demo/app.html


MCMC IN PYTHON:
EMCEE
• Python implementation of Affine Invariant Ensemble Sampler (Goodman, 

2010).
• Affine Invariant: addresses inefficiencies in MCMC sampling of posteriors with 

large covariances
• Ensemble Sampler: large set of walkers simultaneously explore posterior

• Positions of other walkers make proposal distribution
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BACKGROUND
LINEAR REGRESSION
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/: feature vector of interest
2: vector of weights controlling form of model
1 " : vector of basis functions, may include polynomial, harmonic, 
sigmoidal, Gaussian functions

Equation for linear model :
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LINEAR REGRESSION
FREQUENTIST APPROACH

! " #,%, & =(
)*+

,
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2), -): input vector, response for data point 3
": vector of responses for all data points
#: array of input vectors as follows; # ≡ 0+ …0) …0,

likelihood function:

target variable: - = 6 0,% + ε

%9: = ;.; 1+;.maximum likelihood estimate:

; =
<= x+ ⋯ <91+ x+
⋮ ⋱ ⋮

<= xB ⋯ <91+ xB

;: data matrix
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