Dynamics of Clustering in Networks with Repulsive Interaction

P. Tomov, H. Meyer-Ortmanns, M. Zaks

Network of N identical one-dimensional elements.

$$\frac{d\varphi_i}{dt} = f(\varphi_i) + \kappa \sum_j A_{ij} g(\varphi_i, \varphi_j)$$

with adjacency matrix Aij.

- Global coupling: synchronization, in case of coupling through the first Fourier harmonics: Strogatz-Watanabe phenomenon (existence of N-3 conserved quantities).
- ▶ Local coupling: lattices

▶ Clustering, splay states . . .

▶ Working elements: coupled "active rotators" (Kuramoto & Shinomoto, 1979):

$$\frac{d\varphi_i}{dt} = \omega - \sin\varphi_i + \kappa \sum_{j}^{N} A_{ij} \sin(\varphi_j - \varphi_i)$$

- Every unit is connected to M other elements. (network is a regular graph with degree M).
- ▶ Gradient dynamics: no small-scale oscillations (full-scale rotations along at least one coordinate)
 ⇒ no Hopf bifurcations.
- Consider "excitable case": ω < 1.
 For all positive κ > 0, the synchronous steady state S₀:
 φ_i = arcsin(ω) ∀i, is stable.

- Negative coupling: $\kappa < 0$: neighbors in counterphase are favored
- e.g. checkerboard pattern on a square lattice with periodic boundary conditions and even sizes

But not if at least one of the sizes is odd!

For a triangular motif (e.g. of a hexagonal lattice) at least one link is always frustrated!

- ▶ Negative coupling: κ < 0.
- Steady state S₀ is stable for:

$$\kappa > \kappa_c = -\frac{\sqrt{1-\omega^2}}{M-\lambda_{\min}},$$

where λ_{\min} is the minimal eigenvalue of the adjacency matrix A_{ij} .

- ▶ Negative coupling: κ < 0.
- Steady state S₀ is stable for:

$$\kappa > \kappa_c = -\frac{\sqrt{1-\omega^2}}{M-\lambda_{\min}},$$

where λ_{\min} is the minimal eigenvalue of the adjacency matrix A_{ij} .

- Empirically: λ_{min} is degenerate (sometimes with rather high multiplicity) for all checked regular graphs.
- Example: hexagonal lattice of L₁ rows and L₂ columns with periodic boundary conditions:

For $L_1 \neq L_2$: multiplicity equals 2.

For $L_1 = L_2 = 3k$: multiplicity equals 2.

For $L_1 = L_2 \neq 3k$: multiplicity equals 6, except

for $L_1 = N_2 = 4$: multiplicity equals 9.

Shrikhande graph (1959).

Discrete symmetries: translations, rotations, reflections.

$$\lambda_{\min} = -2$$
.

9-dimensional central manifold at κ_c .

What happens at κ_c ?

(saddle-node, pitchfork, transcritical, . . .)

▶ Working elements: N globally coupled active rotators

$$\frac{d\varphi_i}{dt} = \omega - \sin\varphi_i + \kappa \sum_{j}^{N} \sin(\varphi_j - \varphi_i)$$

 \triangleright Synchronous equilibrium $\varphi_i = \arcsin \omega, i = 1, ..., N$ is stable for

$$\kappa > \kappa_0 = -\frac{\sqrt{1-\omega^2}}{N}$$

 \triangleright the critical eigenvalue has multiplicity N-1.

N globally coupled active rotators

- ▶ For odd N: $2^{N-1} 1$ transcritical branches;
- For even N: $2^{N-1} + N! / \left(2(\frac{N}{2}!)^2\right) 1$ branches,

whereof $N!/\left(\left(\frac{N}{2}!\right)^2\right)$ form subcritical pitchforks.

- All saddles with $\dim(W_s) > \dim(W_u)$ lie on transcritical branches; All saddles with $\dim(W_s) = \dim(W_u)$ lie on pitchforks.
- ▶ For $\kappa < k_0$: no stable equilibria.

For sufficiently negative values of κ , numerical integration shows, that initially distinct and broadly scattered phase values tend to formation of several oscillating groups, inside which the values (nearly) coincide.

henceforth I refer to such groups as clusters (dynamical clusters, state clusters...)

Members of the same cluster are not necessarily neighbors on the lattice.

Example: fix $\omega = 0.7 \rightarrow \kappa_c = -0.089267...$ Take $\kappa = -1/3$.

From 10^5 initial conditions in the hypercube $[0:2\pi]^{16}$, 34.87% converge to the limit cycle: the pattern with 6 clusters

and its symmetric images (altogether 192).

- 2.17% converge to the limit cycle without clustering: pattern of 16 non-coinciding rotators and its symmetric images.
- 0.3% converge to quasiperiodic oscillations without clustering (smooth curves on the Poincaré hyperplane).
- The rest (63%) converges to periodic oscillations in one of the spatial patterns with 4 clusters.

- ...The rest (63%) converges to periodic oscillations in one of the spatial patterns with 4 clusters.
- ▶ There seems to be no distinct value of period: within precision 10⁻⁴, over 4×10⁴ different values are resolved.
- Spatial arrangement in these clustering patterns:

Spatial arrangement in these clustering patterns:

- In each configuration, every element is connected to two rotators from every other cluster.
- This is spontaneous onset of global coupling: units are coupled locally, but clusters are coupled globally.

- Introducing collective variables, we arrive at a set of 4 globally coupled identical oscillators.
- → Strogatz-Watanabe phenomenon, 4-3=1 conserved quantity

- Introducing collective variables, we arrive at a set of 4 globally coupled identical oscillators.
- ⇒ Strogatz-Watanabe phenomenon, 4-3=1 conserved quantity
- ightharpoonup
 igh
- ▶ Integral:

$$I = \frac{\sin\frac{\phi_1 - \phi_2}{2} \sin\frac{\phi_3 - \phi_4}{2}}{\sin\frac{\phi_1 - \phi_3}{2} \sin\frac{\phi_2 - \phi_4}{2}}$$

- The same reduced system of the 4th order (with rescaled coupling) stands behind different configurations of clusters.
- The very same periodic solution of reduced system can be arranged on the lattice in different spatial ways, and have different stability with respect to the cluster-splitting perturbations. (Lou Pecora, yesterday: "desynchronizing peturbations")

- \triangleright The family of periodic solutions is born at κ_c in a highly degenerate global bifurcation.
- Recall case of global coupling:

at κ_c the symmetric equilibrium collides with 10 saddles in the invariant subspace of ... for every 4-cluster pattern with all its translations, rotations and reflections.

- The family of periodic solutions is born at κ_c in a highly degenerate global (transcritical heteroclinic) bifurcation.
- Near κ_c the whole newborn continuum of periodic solutions is unstable (with respect to splitting of clusters), but further decrease of κ leads to stabilization of its segments.
- Asymptotics of (range of) periods near κ_c :

$$T \sim \frac{1}{\kappa_c - \kappa}$$

Definitions of Peter Ashwin:

The oscillators are <u>indistinguishable</u> if they are identical and interchangeable in the sense that they have the same number and strength of inputs.

Oscillators i and j on a trajectory are frequency synchronized if

$$\Omega_{ij} := \lim_{T \to \infty} \frac{1}{T} [\theta_i(T) - \theta_j(T)] = 0$$

and the trajectory is frequency synchronized if $\Omega_{ij} = 0$ for all $i \neq j$.

A is a chimera state if it is a compact recurrent invariant set such that trajectories within A are not frequency synchronized.

- \triangleright Steady checkerboard pattern is not the only attractor of the square lattice at negative values of κ .
- For sufficiently strong repelling interaction, oscillatory patterns with global coupling between clusters get stabilized:

- \triangleright Steady checkerboard pattern is not the only attractor of the square lattice at negative values of κ .
- For sufficiently strong repelling interaction, oscillatory patterns with global coupling between clusters get stabilized:

5 clusters

2 integrals

4 clusters

1 integral

note a neighbor from the same cluster!

Similar effect takes place on a ring with N rotators, where each unit repulsively interacts with M neighbors.

5 clusters

2-parameter continuous family of periodic solutions

- For the effect to take place:
- Number of clusters K should be a divisor of N
- Every element interacts with equal number of elements from every other cluster (except the cluster to which it belongs itself).
 - The number n of connections between the element and other elements of the same cluster can be anything from 0 to M+1-K.
- ▶ Hence, $K=1+\operatorname{div}(M-n)$ (1+ any of the integer divisors of M-n). Integrals, continuous families of solutions etc. arise at K>3.
- ▶ For a general hexagonal coupling (M=6) this refers to:

$$K=7$$
 at $n=0$, $K=6$ at $n=1$, $K=5$ at $n=2$, $K=4$ at $n=0$ and $n=3$.

For the square coupling (M=4) there are just two possibilities: K=5 at n=0, and K=4 at n=1.

Summarizing:

- In a network of repulsively coupled identical units on a regular graph with properly related degree and the number of nodes,
- by the elements can spontaneously group into clusters of equal size,
- so that every cluster interacts with equal intensity with every other cluster.
- If, additionally, the coupling is restricted to the 1st Fourier harmonics, conserved quantities, and, as a consequence, continuous families of solutions can be encountered.