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/f’ network topology

Network of N identical one-dimensional elements.
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with adjacency matrix Aj;.
> Global coupling: synchronization,

in case of coupling through the first Fourier harmonics:
Strogatz-Watanabe phenomenon
(existence of N-3 conserved quantities).

> Local coupling: lattices
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> Clustering, splay states . ..




> Working elements: coupled “active rotators”
(Kuramoto & Shinomoto, 1979):
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> Every unit is connected to M other elements.
(network is a regular graph with degree M ).

> Gradient dynamics: no small-scale oscillations
(full-scale rotations along at least one coordinate)
= no Hopf bifurcations.

> Consider “excitable case™: w < 1.
For all positive & > 0, the synchronous steady state Sp:
¢; = arcsin(w) Vi, is stable.




ﬂ repulsive interaction

> Negative coupling: & < 0: neighbors in counterphase are favored
> e.g. checkerboard pattern on a square lattice
with periodic boundary conditions and even sizes
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> But not if at least one of the sizes is odd!
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> For a triangular motif (e.g. of a hexagonal lattice)
at least one link is always frustrated!




ﬂ repulsive interaction

> Negative coupling: K < 0.
> Steady state S; is stable for:
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where A, is the minimal eigenvalue of the adjacency matrix A;.




repulsive interaction

> Negative coupling: Kk < 0.
> Steady state S is stable for:

1 — w?

= M — /\miu’
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where A, is the minimal eigenvalue of the adjacency matrix A;.

> Empirically: A, is degenerate (sometimes with rather high
multiplicity) for all checked regular graphs.

> Example: hexagonal lattice of L; rows and L, columns
with periodic boundary conditions:

For Ly # Ly: multiplicity equals 2.
For L, = L, = 3k: multiplicity equals 2.
For L, = L, # 3k: multiplicity equals 6, except

for L; = N> = 4: multiplicity equals 9.



ﬂ hexagonal coupling on a 4x4 lattice

Shrikhande graph (1959).

Discrete symmetries: translations, rotations, reflections.
/\min = —2.

9-dimensional central manifold at ..

What happens at k.7

( saddle-node, pitchfork, transcritical,. .. )




/ Inset: think global!

> Working elements: N globally coupled active rotators

dy; : - :
d: = W — SIn cp,-+h:zj:sm(cpj —L,O,)

> Synchronous equilibrium ¢; = arcsinw, i = 1,..., N is stable for
V1 — w?
K> Ky = — N

> the critical eigenvalue has multiplicity NV — 1.




ﬂ Inset: think global!

N globally coupled active rotators

> For odd N-: 2N=1 _ 1 transcritical branches:
N
> For even N: 2L v Y/ (2(—2—!)2) — 1 branches,

whereof N!/ ((g')z) form subcritical pitchforks.

> All saddles with dim(W;) > dim(W,) lie on transcritical branches;
All saddles with dim(W;) = dim(W,) lie on pitchforks.

> For k < kg: no stable equilibria.




ﬁ empirical observation

For sufficiently negative values of &, numerical integration shows,
that initially distinct and broadly scattered phase values

tend to formation of several oscillating groups,

inside which the values (nearly) coincide.

IKF

henceforth | refer to such groups as clusters
(dynamical clusters, state clusters...)

Members of the same cluster are not necessarily neighbors
on the lattice.




(ﬂ numerical procedure

Example: fix w =07 — k. = —0.089267.. ..
Take K = —1/3.

> From 10° initial conditions in the hypercube [0 : 27]'°,
34 87% converge to the limit cycle: the pattern with 6 clusters

and its symmetric images (altogether 192).
> 2.17% converge to the limit cycle without clustering:
pattern of 16 non-coinciding rotators and its symmetric images.

> 0.3% converge to quasiperiodic oscillations without clustering
(smooth curves on the Poincaré hyperplane).

> The rest (63%) converges to periodic oscillations in one of the
spatial patterns with 4 clusters.
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H numerical evidence

> ...The rest (63%) converges to periodic oscillations in one of the
spatial patterns with 4 clusters.

> There seems to be no distinct value of period:
within precision 10™*, over 4 x10? different values are resolved.

> Spatial arrangement in these clustering patterns:




ﬁ 10 clustering patterns
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@ closer look

> Spatial arrangement in these clustering patterns:

> In each configuration, every element is connected
to two rotators from every other cluster.

> = Every cluster is connected to every other cluster
with the same coupling strength.

> This is spontaneous onset of global coupling:
units are coupled locally, but clusters are coupled globally.




ﬂ familar setup

> Introducing collective variables, we arrive at a set of 4 globally
coupled identical oscillators.

> => Strogatz-Watanabe phenomenon, 4-3=1 conserved quantity




ﬂ familar setup

> Introducing collective variables, we arrive at a set of 4 globally
coupled identical oscillators.

> = Strogatz-Watanabe phenomenon, 4-3=1 conserved quantity
> => 1-parameter continuous family of periodic solutions
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> The same reduced system of the 4th order (with rescaled coupling)
stands behind different configurations of clusters.

> The very same periodic solution of reduced system
can be arranged on the lattice in different spatial ways,

and have different stability
with respect to the cluster-splitting perturbations.

(Lou Pecora, yesterday: “desynchronizing peturbations”)




> The family of periodic solutions is born at k.
in a highly degenerate global bifurcation.

> Recall case of global coupling:

at k. the symmetric equilibrium collides with 10 saddles

in the invariant subspace of ... for every 4-cluster pattern

with all its translations, rotations and reflections.




> The family of periodic solutions is born at k.

in a highly degenerate global (transcritical heteroclinic) bifurcation.
> Near k. the whole newborn continuum of periodic solutions

Is unstable (with respect to splitting of clusters),

but further decrease of & leads to stabilization of its segments.
> Asymptotics of (range of) periods near k:
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Intermezzo: minimalistic chimera

Definitions of Peter Ashwin:
The oscillators are indistinguishable if they are identical and
interchangeable in the sense that they have the same number and

strength of inputs.
Oscillators 7 and j on a trajectory are frequency synchronized if

Q; = lim —[6,(T) — 6,(T)] =0

T —o00

and the trajectory is frequency synchronized if £2; = 0 for all / # ;.

A is a chimera state if it is a compact recurrent
invariant set such that trajectories within A are not
frequency synchronized.




ﬂ square lattice revisited

> Steady checkerboard pattern is not the only attractor of the square
lattice at negative values of k.

> For sufficiently strong repelling interaction, oscillatory patterns
with global coupling between clusters get stabilized:




ﬂ square lattice revisited

> Steady checkerboard pattern is not the only attractor of the square
lattice at negative values of k.

> For sufficiently strong repelling interaction, oscillatory patterns
with global coupling between clusters get stabilized:
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note a neighbor from the same cluster!




> Similar effect takes place on a ring with N rotators, where each
unit repulsively interacts with M neighbors.

5 clusters

2-parameter continuous family of periodic solutions




ﬂ general remarks

> For the effect to take place:
> Number of clusters K should be a divisor of N

> Every element interacts with equal number of elements from every
other cluster (except the cluster to which it belongs itself).

The number n of connections between the element and other
elements of the same cluster can be anything from O0to M +1 — K.

> Hence, K=1+div(M-n) ( 1+ any of the integer divisors of M-n).
Integrals, continuous families of solutions etc. arise at K>3.

> For a general hexagonal coupling (M=6) this refers to:
K=7 at n=0, K=6 at n=1,
N=5at n=—2 K=4 at n=0 and n=3.

> For the square coupling (M=4) there are just two possibilities:
K=5 at n=0, and K=4 at n=1.
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Summarizing:

> In a network of repulsively coupled identical units on a regular graph
with properly related degree and the number of nodes,

> the elements can spontaneously group into clusters of equal size,

> so that every cluster interacts with equal intensity
with every other cluster.

> If, additionally, the coupling is restricted to the 1st Fourier harmonics,
conserved quantities, and, as a consequence,
continuous families of solutions can be encountered.




