
Asynchronous Iterative Solvers for
Extreme-Scale Computing

Edmond Chow, Georgia Institute of Technology
Erik Boman, Sandia National Laboratories
Jack J. Dongarra, University of Tennessee

Daniel B. Szyld, Temple University

SIAM Annual Meeting, Pittsburgh, PA
July 10-14, 2017



Overview

I Motivation for asynchronous methods; simple examples

I Optimized Schwarz method

I Parallel and distributed Southwell methods



Fixed-point iteration for solving x = G(x)

x(k+1) = G(x(k)), k = 0,1,2, . . .

Written explicitly:

x1 = g1(x1,x2,x3,x4, · · · ,xm)

x2 = g2(x1,x2,x3,x4, · · · ,xm)

x3 = g3(x1,x2,x3,x4, · · · ,xm)

x4 = g4(x1,x2,x3,x4, · · · ,xm)
...

xm = gm(x1,x2,x3,x4, · · · ,xm)

Synchronous: all updates use components of x at the same iteration

Asynchronous: updates are assigned to processors statically or
dynamically; updates use latest components of x that are available



Standard references on asynchronous iterative methods

Chazan, Miranker, “Chaotic relaxation,” 1969

Baudet, “Asynchronous iterative methods for multiprocessors,” 1978

Bertsekas, Tsitsiklis, “Parallel and Distributed Computation: Numerical
Methods,” 1989

Frommer, Szyld, “On asynchronous iterations,” 2000 (includes
nonlinear iterations)

Bahi, Contassot-Vivier, Couturier, “Parallel Iterative Algorithms: from
Sequential to Grid Computing,” 2007

Recht, Re, Wright, Niu, “Hogwild: A lock-free approach to parallelizing
stochastic gradient descent,” 2011 (for optimization)



Are asynchronous methods faster than
synchronous methods?

If processors perform updates at exactly the same rate:

I Asynchronous and synchronous methods have the same speed

If some processors are slower (e.g., load imbalance):

I Asynchronous method is faster than synchronous method



Are asynchronous methods faster than
synchronous methods?

If processors perform updates at exactly the same rate:

I Asynchronous and synchronous methods have the same speed

If some processors are slower (e.g., load imbalance):

I Asynchronous method is faster than synchronous method



Are asynchronous methods faster than
synchronous methods?

If processors perform updates at exactly the same rate:

I Asynchronous and synchronous methods have the same speed

If some processors are slower (e.g., load imbalance):

I Asynchronous method is faster than synchronous method



Are asynchronous methods faster than
synchronous methods?

If processors perform updates at exactly the same rate:

I Asynchronous and synchronous methods have the same speed

If some processors are slower (e.g., load imbalance):

I Asynchronous method is faster than synchronous method



Asynchronous vs. synchronous: 1 slow processor

I 100 equations (finite difference Laplacian on 10×10 grid)

I 10 processors

I 9 processors each update 10 equations in 10 units of time
(write to other processors after 10 units of time)

I 1 processor updates 10 equations in s units of time, e.g., s = 20

I tests are Matlab simulations



Asynchronous vs. synchronous: 1 slow processor

Time

0 200 400 600 800 1000

R
e
s
id

u
a
l 
n
o
rm

10 -3

10 -2

10 -1

10 0

10

20 async

20 sync

If, on the other hand, one processor is faster, the asynchronous
algorithm is even faster than “10 sync”



Asynchronous time for different delays by one processor

Time

0 200 400 600 800 1000

R
e
s
id

u
a
l 
n
o
rm

10
-3

10
-2

10
-1

10
0

10

20

50

100



Asynchronous vs. synchronous: speedup (fixed accuracy)

Time for slowest proc

0 100 200 300

A
s
y
n
c
/S

y
n
c
 s

p
e
e
d
u
p

1

1.5

2

2.5

3

3.5

4

4.5

Ultimate speedup is eventually limited by the convergence on the
slowest processor.



If a processor does not receive new data, does it waste
computation by continuing to iterate on its local equations?

I 4096 equations (finite difference Laplacian on 64×64 grid)

I 64 processors

I Each processor performs k local sweeps before writing updated
values to shared memory

I Count iterations to reach ‖rn‖/|r0‖< 0.05



Additional local iterations before communicating

Local sweeps per communication

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r 

o
f 

it
e

ra
ti
o

n
s

0

20

40

60

80

100

Additional sweeps improve convergence, but may increase total
computation.



Overdecomposition for asynchronous methods

So far, we have p blocks of equations and p processors.

Overdecompose the problem: m blocks and p processors, with m > p

I Not all blocks are being updated at the same time

I Processors use latest data that is available

I Updates tend to use fresher information (like Gauss-Seidel)

Note: on GPUs, we always decompose the problem; need more
thread blocks than multiprocessors (to hide memory latency).

Example: 4096 equations, 64 processors
64 blocks⇒ overdecomposition factor 1
128 blocks⇒ overdecomposition factor 2

...
4096 blocks⇒ overdecomposition factor 64



Overdecomposition

Overdecomposition factor

1 2 4 8 16 32 64

N
u

m
b

e
r 

o
f 

it
e

ra
ti
o

n
s

0

20

40

60

80

100



Distributed parallel implementation issues

Need two features for efficiency:

I Remote memory access (RMA): process can get/put data on a
target process without interaction from the target

I Asynchronous completion: not all RMA functions (e.g., remote
accumulate functions) may be supported by the hardware, and
software support may be needed

Gerstenberger, Besta, Hoefler, “Enabling highly-scalable remote memory access
programming with MPI-3 one sided,” 2013

Si, Peña, Hammond, Balaji, Takagi, Ishikawa, “Casper: an asynchronous progress
model for MPI RMA on many-core architectures,” 2015

Magoulès, Gbikpi-Benissan, Venet, “JACK: an asynchronous communication kernel
library for iterative algorithms,” 2016



Optimized Schwarz method



Interlude: Krylov subspace methods

Krylov subspace methods are effective and widely-used for solving
large-scale linear systems

Dot-products (global synchronizations) in Krylov methods are very
costly at high levels of parallelism

Some possible remedies:

I s-step and communication avoiding Krylov subspace methods:
Chronopoulos, Gear 1989; Hoemmen, Demmel, 2010

I Pipelined Krylov subspace methods: Ghysels, Ashby,
Meerbergen, Vanroose, 2013; Gropp ∼2010

Effect of hiding collective communication by MPI Iallreduce is
significant, especially for strong scaling (Nakajima, 2017)

Backward error is increased compared to “standard” method (Carson,
Rozložnı́k, Strakoš, et al., 2017), i.e., higher precision computation is
needed



Motivation for asynchronous optimized Schwarz

Schwarz methods do not require global synchronizations, but are slow
compared to Krylov subspace methods

Optimized Schwarz methods (e.g., Gander, Nataf) converge rapidly

Optimized Schwarz methods are fixed-point iterations and
asynchronous versions are possible (Magoulès, Szyld, Venet, 2017)

Use Krylov subspace methods for subdomain solves

The latter is related to: McInnes, Smith, Zhang, Mills, 2014:
Reduce number of outer Krylov iterations with inner iterations also
using Krylov methods



Test problem

2-D isotropic diffusion problem

∇
2u = f in Ω = (0,1)× (0,1)

u = 0 on ∂Ω

discretized with (1) centered finite differences or (2) linear triangular
finite elements (irregular mesh).

Discrete f chosen with random components uniformly in a range with
mean zero.



Optimized Schwarz

Subdomain problems are solved with transmission conditions that
involve a parameter, e.g., OO0 transmission conditions:

∂u(1)

∂n1
+ αu(1) =

∂u(2)

∂n1
+ αu(2)

for subdomains (1) and (2).

Parameter α is to be chosen to optimize convergence.

We use optimized restricted additive Schwarz.

See references in:
Dolean, Jolivet, Nataf 2015



Finite difference mesh



Unknowns partitioned without overlap



First subdomain is extended



All subdomains extended



Interior boundary for first subdomain



Optimized Schwarz results

2-D FD Laplacian on p×p processor grid
(p = 10 in most experiments).

Local problem size is nominally m×m (unextended dimensions of
interior subdomain).

“Minimum overlap” used unless otherwise indicated.



Optimized Schwarz

alpha

10
-3

10
-2

10
-1

10
0

10
1

10
2

It
e
ra

ti
o
n
 c

o
u
n
t

0

500

1000

1500

2000

2500
m=15

m=30

m=45

Optimal iteration counts much smaller than for classical Schwarz and
are many times smaller than those of IC(0)-PCG.



Optimized Schwarz

alpha

0 0.02 0.04 0.06

It
e

ra
ti
o

n
 c

o
u

n
t

0

50

100

150

200

250

300

m=15

m=30

m=45

Relatively slow increase in optimal iteration count with problem size.



Analysis of spectral radius: synchronous case, m = 30

0 0.05 0.1 0.15

α

0.5

0.6

0.7

0.8

0.9

1

S
p

e
c
tr

a
l 
R

a
d

iu
s

(Garay, Szyld, Magoulès, 2017)



Analysis of spectral radius: asynchronous case, m = 30

10
-3

10
-2

10
-1

10
0

10
1

α

0.8

0.9

1

1.1

S
p
e
c
tr

a
l 
R

a
d
iu

s

(Garay, Szyld, Magoulès, 2017)



Optimized Schwarz: increasing mesh resolution

20 40 60 80 100 120 140

Local subdomain width, m

0

0.01

0.02

0.03

0.04

0.05

O
p
ti
m

a
l 
a
lp

h
a



Optimized Schwarz: strong scaling iteration counts

Local subdomain width, m

60 80 100 120 140 160

It
e

ra
ti
o

n
 c

o
u

n
t

0

20

40

60

80

100



Relation between αopt and m

Local subdomain width, m

60 80 100 120 140 160

O
p
ti
m

a
l 
a
lp

h
a
 t
im

e
s
 m

0.5

0.55

0.6

0.65

0.7

0.75

0.8

α×m is dimensionless; similar relation between αopt and p



Challenges

I Optimizing the α parameters for each interface for complicated
problems

I Application codes typically to not provide derivative information to
solvers

I Incorporating a coarse grid solve in asynchronous fashion



Parallel and distributed Southwell methods



Gauss-Seidel and Southwell Relaxation

For solving Au = f

Gauss-Seidel Relaxation
At each step, choose the “next” equation to relax using a pre-specified
ordering of all the equations.

Southwell Relaxation
At each step, relax the equation with the largest residual; equations
can be relaxed multiple times before others are relaxed. Sequential
algorithm by definition.

R. V. Southwell, Relaxation Methods in Engineering Science, a
Treatise on Approximate Computation, Oxford Univ. Press, 1940

R. V. Southwell, Relaxation Methods in Theoretical Physics, Oxford
Univ. Press, 1946



Southwell vs. Gauss-Seidel (FEM problem)

Num. relaxations

0 3081 6162 9243

R
e

s
id

u
a

l 
n

o
rm

0.2

0.4

0.6

0.8

1
GS

SW

Southwell uses half as many relaxations when low accuracy needed



Parallel Southwell

For simplicity, assume one-to-one assignment of equations to threads
or compute nodes.

Goals:
More than one equation can be relaxed simultaneously.
Avoid global communication to determine which equations to relax.

Main idea:
An equation is relaxed if its residual is larger in size than the residuals
of all its neighbors.

Neighbor = neighbor in the PDE mesh, or an equation that is directly
coupled through a common variable.

Note: Assumes the residual of neighbors can be accessed cheaply.



Parallel Southwell

Num. relaxations

0 3081 6162 9243

R
e

s
id

u
a

l 
n

o
rm

0.2

0.4

0.6

0.8

1
GS

SW

Par SW

Parallel Southwell: similar number of relaxations as Southwell, but is
parallel.



Parallel Southwell vs. multicolor GS

Num. relaxations

0 3081 6162 9243

R
e

s
id

u
a

l 
n

o
rm

0.2

0.4

0.6

0.8

1
GS

SW

Par SW

MC GS

Relaxation is associated with communication; therefore Parallel
Southwell does less communication than multicolor GS.



Parallel Southwell vs. Jacobi

Num. relaxations

0 3081 6162 9243

R
e

s
id

u
a

l 
n

o
rm

0.2

0.4

0.6

0.8

1
GS

SW

Par SW

MC GS

Jacobi

Unlike Jacobi, Parallel Southwell is guaranteed to converge for any
SPD system.



Parallel Southwell smoother

FD Laplacian problem. Residual norm after 9 V(1,1) cycles.

Grid dimension

15 31 63 127 255

R
e

l.
 r

e
s
id

u
a

l 
n

o
rm

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

GS, 1 swp

SW, 1/2 swp

SW, 1 swp

Par SW, 1 swp

Par SW, 1/2 swp



Related work: (sequential) Southwell method as a smoother

I Rüde, “Fully adaptive multigrid methods,” 1993.

I Griebel and Oswald, “Greedy and randomized versions of the
multiplicative Schwarz method,” 2012.



Distributed Southwell

I Remove assumption that the residual on neighbor processor is
cheap to access

I Use an estimate of the exact residual on neighbor processors

I Estimate of residual on j can be updated by i without
communication when relaxation on i is performed

i⇐⇒ j⇐⇒ k

but estimates get out of date when other relaxations affect j

I Deadlock can occur when all processors think that its residual is
smaller than one of its neighbors

I To avoid deadlock, processors keep track of the estimates other
processors have of its residual. If the estimate is higher than the
true residual, then use communication to update the estimate

I Asynchronous implementation: Wolfson-Pou, Chow 2017



Distributed Southwell

I Remove assumption that the residual on neighbor processor is
cheap to access

I Use an estimate of the exact residual on neighbor processors

I Estimate of residual on j can be updated by i without
communication when relaxation on i is performed

i⇐⇒ j⇐⇒ k

but estimates get out of date when other relaxations affect j

I Deadlock can occur when all processors think that its residual is
smaller than one of its neighbors

I To avoid deadlock, processors keep track of the estimates other
processors have of its residual. If the estimate is higher than the
true residual, then use communication to update the estimate

I Asynchronous implementation: Wolfson-Pou, Chow 2017



Distributed Southwell

I Remove assumption that the residual on neighbor processor is
cheap to access

I Use an estimate of the exact residual on neighbor processors

I Estimate of residual on j can be updated by i without
communication when relaxation on i is performed

i⇐⇒ j⇐⇒ k

but estimates get out of date when other relaxations affect j

I Deadlock can occur when all processors think that its residual is
smaller than one of its neighbors

I To avoid deadlock, processors keep track of the estimates other
processors have of its residual. If the estimate is higher than the
true residual, then use communication to update the estimate

I Asynchronous implementation: Wolfson-Pou, Chow 2017



Distributed Southwell

Num. relaxations

0 3081 6162 9243

R
e
s
id

u
a
l 
n
o
rm

0.2

0.4

0.6

0.8

1
SW

Par SW

MC GS

Dist SW

Distributed Southwell relaxes more equations per step than
Parallel Southwell but converges more slowly.



Distributed Southwell with delay

Num. relaxations

0 3081 6162 9243

R
e

s
id

u
a

l 
n

o
rm

0.2

0.4

0.6

0.8

1
SW

Par SW

MC GS

Dist SW

Dist SW delay=1

Delay improves convergence but reduces parallelism (equations that
are relaxed cannot relax at the next iteration).



Comparison by parallel steps

Num. parallel steps

0 10 20 30

R
e

s
id

u
a

l 
n

o
rm

0.2

0.4

0.6

0.8

1
Jacobi

Par SW

MC GS

Dist SW

Dist SW delay=1

Distributed Southwell is better than Parallel Southwell per parallel step.



Comparison by parallel steps

Num. parallel steps

0 10 20 30

R
e

s
id

u
a

l 
n

o
rm

0.2

0.4

0.6

0.8

1
Jacobi

Par SW

MC GS

Dist SW

Dist SW delay=1

Cannot take too many Jacobi steps!



Challenges

I Incorporating multiple levels (coarse grid solves) asynchronously

I Distributed termination (detecting and signaling convergence)



Conclusions

Asynchronous methods

I Can be faster than synchronous methods when there is load
imbalance or machine non-uniformities

Optimized Schwarz

I Converges rapidly and can be implemented asynchronously

I A challenge is to determine optimization parameters

Parallel and distributed Southwell

I Potentially useful if communication cost is a bottleneck

I Challenge is to develop these ideas into an asynchronous
multilevel solver



Team

Georgia Tech
Edmond Chow
Jordi Wolfson-Pou
Paritosh Ramanan
Fan Zhou

University of Tennessee
Jack Dongarra
Hartwig Anzt
Ichitaro Yamazaki

Sandia Labs
Erik Boman
Siva Rajamanickam
Christian Glusa

Temple University
Daniel Szyld
José Garay
Mireille El-Haddad

This material is based upon work supported by the U.S. DOE Office of Science,
Office of Advanced Scientific Computing Research, Applied Mathematics program
under Award Number DE-SC-0016564.


