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Outline

• Why use depth-averaged models?
• Current and potential applications
• Why AMR is often crucial

• Shallow water equations
• Dry states and margins
• Steady states and well-balancing

• Depth-averaged models of complex flows
• Other applications
• Some mathematical challenges

R. J. LeVeque SIAM Annual Meeting, July 9, 2008



Outline

• Why use depth-averaged models?
• Current and potential applications
• Why AMR is often crucial

• Shallow water equations
• Dry states and margins
• Steady states and well-balancing

• Depth-averaged models of complex flows
• Other applications
• Some mathematical challenges

R. J. LeVeque SIAM Annual Meeting, July 9, 2008



Outline

• Why use depth-averaged models?
• Current and potential applications
• Why AMR is often crucial

• Shallow water equations
• Dry states and margins
• Steady states and well-balancing

• Depth-averaged models of complex flows
• Other applications
• Some mathematical challenges

R. J. LeVeque SIAM Annual Meeting, July 9, 2008



Depth-averaged models

Two-dimensional Euler:

(ρU)t + (ρU2 + p)x + (ρUW )z = 0

(ρW )t + (ρUW )x + (ρW 2 + p)z = 0
ρt + (ρU)x + (ρW )z = 0

Ux + Wz = 0.

This is generally a free-surface problem for B(x) ≤ z ≤ η(x, t)
B(x) = bottom or bathymetry, η(x, t) = surface.

Assume:

ρ(x, z, t) = constant (homogeneous density)
W (x, z, t) = 0 (vertical velocity negligible)
p(x, z, t) = g(η(x, t)− z) (hydrostatic pressure)
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Depth-averaged models

Let

h(x, t) = η(x, t)−B(x), (fluid depth)

u(x, t) =
1

h(x, t)

∫ η(x,t)

B(x)
U(x, z, t) dz.

Integrate Euler equations in z to obtain p = 1
2gh2 and ...

One-dimensional Shallow Water (St. Venant) Equations

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

= −ghB′(x)
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Depth-averaged models

Similary, reduce three-dimensional free surface problem to...

Two-dimensional Shallow Water (St. Venant) Equations

ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

+ (huv)y = −ghBx(x, y)

(hv)t + (huv)x +
(
hv2 +

1
2
gh2

)
y

= −ghBy(x, y)

where (u, v) are velocities in the horizontal directions (x, y).
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Depth-averaged models

Advantages:
• 2D rather than 3D

Often critical for realistic geophysical flows
Vastly different spatial scales, e.g. ocean to harbor
Need Adaptive Mesh Refinement even in 2D!

• No free surface η(x, y, t).

Possible problems:
• When is this valid?
• What if fluid is not homogeneous, or

shallow water assumptions don’t hold?
• Often still a free boundary in te x-y domain,

at the shoreline or at the margins of the flow.
• Small perturbations to steady state hard to capture.
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Tsunamis

Generated by
• Earthquakes,
• Landslides,
• Submarine landslides,
• Volcanoes,
• Meteorite or asteroid impact

There were 97 significant tsunamis during the 1990’s,
causing 16,000 casualties.

There have been approximately 28 tsunamis with run-up
greater than 1m on the west coast of the U.S. since 1812.
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Tsunamis

• Small amplitude in ocean (< 1 meter) but can grow to
10s of meters at shore.

• Run-up along shore can inundate 100s of meters inland

• Long wavelength (as much as 200 km)

• Propagation speed
√

gh (much slower near shore)

• Average depth of Pacific or Indian Ocean is 4000 m
=⇒ average speed 200 m/s ≈ 450 mph
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Sumatra event of December 26, 2004
Magnitude 9.1 quake near Sumatra, where Indian tectonic plate
is being subducted under the Burma platelet.

Rupture along subduction zone
≈ 1200 km long, 150 km wide

Propagating at ≈ 2 km/sec (for ≈ 10 minutes)

Fault slip up to 15 m, uplift of several meters.
(Fault model from Caltech Seismolab.)

www.livescience.com
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Cross section of Indian Ocean & tsunami

Surface elevation
on scale of 10 meters:

Cross-section
on scale of kilometers:
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Shallow water equations with bathymetry B(x, y)

ht + (hu)x + (hv)y = 0

(hu)t +
(

hu2 +
1
2
gh2

)
x

+ (huv)y = −ghBx(x, y)

(hv)t + (huv)x +
(

hv2 +
1
2
gh2

)
y

= −ghBy(x, y)

Some issues:

• Delicate balance between flux divergence and bathymetry:
h varies on order of 4000m, rapid variations in ocean
Waves have magnitude 1m or less.

• Cartesian grid used, with h = 0 in dry cells:
Cells become wet/dry as wave advances on shore
Robust Riemann solvers needed.

• Adaptive mesh refinement crucial
Interaction of AMR with source terms, dry states
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Tsunami simulations

• 2D shallow water + bathymetry

• Finite volume method
• Cartesian grid

• Cells can be dry (h = 0)

• Cells become wet/dry as wave
moves on shore

• Mesh refinement on rectangular
patches

• Adaptive — follows wave, more
levels near shore
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Local modeling near Chennai (Madras), India
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Tsunami simulations

Adaptive mesh refinement is essential

Zoom on Madras harbors with 4 levels of refinement:
• Level 1: 1 degree resolution (∆x ≈ 110 km)
• Level 2 refined by 8.
• Level 3 refined by 8: ∆x ≈ 1.6 km (only near coast)
• Level 4 refined by 64: ∆x ≈ 25 meters (only near Madras)

Factor 4096 refinement in x and y.

Less refinement needed in time since c ≈
√

gh.

Runs in a few hours on a laptop. Movie
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Cascadia subduction fault

• 1200 km long off-shore fault stretching from northern California to
southern Canada.

• Last major rupture: magnitude 9.0 earthquake on January 26, 1700.

• Tsunami recorded in Japan with run-up of up to 5 meters.

• Historically there appear to be magnitude 8 or larger quakes every 500
years on average.
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Cascadia event simulations

Magnitude 9.0 earthquake similar to 1700 event.

Dave Alexander, Bill Johnstone, SpatialVision, Vancouver, BC

Barbara Lence, Civil Engineering, UBC

Movies:

Vancouver Island and Olympic Penninsula

Ucluelet
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Hazard Study for Tofino, BC
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Hazard Study for Tofino, BC
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Comparison to NOAA model

Thanks to Tim Walsh (WA State DNR)

R. J. LeVeque SIAM Annual Meeting, July 9, 2008



GeoClaw Software

TsunamiClaw: Dave George’s code based on Clawpack.

Recently made more general as GeoClaw.

Currently includes:
• 2d library for depth-averaged flows over topography.
• Well-balanced Riemann solvers that handle dry cells.
• General tools for dealing with multiple data sets at different

resolutions.
• Tools for specifying regions where refinement is desired.
• Graphics routines (Matlab currently, moving to Python).
• Output of time series at gauge locations or on fixed grids.
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GeoClaw

Future:
• Other depth-averaged flow rheologies
• Two-dimensional vertical slices,

full 3D models for flow on topography
• Subsurface flows, seismology, etc.

Test version recently released as part of Clawpack 5.0
see www.clawpack.org.

Some other new features:
• Python interface tools and open source graphics
• EagleClaw (Easy Access Graphical Laboratory for

Exploring Conservation Laws)

• Will include other generalizations such as David
Ketcheson’s WENOCLAW (high order methods).
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Some other applications

Shallow water equations:
• Storm surges, hurricanes
• River flooding
• Dam breaks

More complex flows:
• Flow on steep terrain
• Debris flows and lahars
• Lava flows
• Pyroclastic flows and surges
• Landslides and avalanches
• Underwater landslides / tsunami generation
• Multi-layer, internal waves
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Debris flows

movie
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Debris flow
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Debris flow
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Debris flow

R. J. LeVeque SIAM Annual Meeting, July 9, 2008



Table top sand flume
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Table top sand flume
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Flume

initiation runout
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Challenges for applied mathematicians

Mathematical modeling and analysis:
• Proper models for depth averaging complex rheologies
• Understanding mathematical structure, e.g.

– Well posedness of equations
– Loss of hyperbolicity in multi-layer equations
– Proper interpretation of products of distributions

Algorithm development:
• Robust methods for dry states, well-balancing
• AMR error estimation, adjoint methods?
• Nonlinear nonconservative products
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Challenges for applied mathematicians

Working with real topography/bathymetry data:
• Interpolation of scattered nonsmooth noisy data
• Automatic smoothing of mismatches between topo/bathy

Some challenging applications:
• Erosion and sedimentation,

tsunami deposits, geomorphology
• Debris flows, land slides, avalanches
• Lava flows
• Many more — American Geophysical Union annual

meeting is a good source of problems!

Collaborate with earth scientists for maximal impact.
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