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What is an appropriate  model for biological dynamics?

Dynamic processes; timing and sequencing of events is essential  



What is an appropriate model of biological dynamics?
Perhaps simplest models are ordinary differential equations 

dx

dt

= f(x,�), x 2 R

n
, � 2 ⇤

In order to use the model we need to “solve” the  differential equation.

What does it mean to “solve” a differential equation in this context?

Challenges.

• Nonlinearity f is heuristic
• parameter space is high dimensional
•  parameters are not known.



Solving differential equations

Newton: Find an analytic representation for x(t) : R ! R

n

Poincare,Smale,…: Qualitative theory, structural stability, bifurcation 
theory

•  Need analytical form of nonlinearity
•  Limitation by dimension of phase space 
•  Limitation by dimension of the parameter space

“Solve” differential equations by describing

Lattice of attractors/Morse decompositions 
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Strongly connected 
path components

Vertices: States
Edges: Dynamics

Don’t know exact current state, so 
don’t know exact next state 

Simple decomposition of 
Dynamics:

Recurrent

Nonrecurrent
  (gradient-like)

Linear time Algorithm!

Morse Graph
of state transition graph

How to build a Morse decomposition?
State Transition Graph



How to  define a State Transition Graph?



Switching	systems

Switching	model
ẋ = �x+ ⇤1(�x!x
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y2!x
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z!x
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ẏ1 = �y1 + ⇤2(�x!y1)

ẏ2 = �y2 + ⇤3(�y1!y2)

ż = �z + ⇤4(�x!z

)

⇤1 = ⇤1(X,Y2, Z) = (X + Y2)Z
Logic of interaction 

is embedded in

Every interaction mediated by 
a piece-wise constant function
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(Glass, Snoussi, Thomas, Edwards, Plahte, Mestl, Chaves, Gouze,…)
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ẏ = �y + 1/2

Target	
point

x

y



9

ẋ = �x +
✓⇢

3 x > 1
1/2 x < 1

◆ ⇢
1/2 y > 1
1 y < 1
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Switching systems give rules to construct state transition 
graph

xx=1 x=2

State transition graph

Edges: Dynamics
Vertices: States

p0

p2

p3

p1

Morse graph



Parameter space 
(Combinatorial bifurcation theory)

ẋ = �x +
✓⇢

3 x > 1
1/2 x < 1

◆ ⇢
1/2 y > 1
1 y < 1

ẏ = �y +
⇢

3 x > 2
1/2 x < 2

ẋ = �x +
✓⇢

b1 x > 1
a1 x < 1

◆ ⇢
a2 y > 1
b2 y < 1

ẏ = �y +
⇢

b3 x > 2
a3 x < 2

Study general system where parameters 
describe expression levels, and thresholds



Combinatorial bifurcation theory

x=1 x=2

State transition graph

xx=1 x=2

State transition graph

State transition diagram changes only when  a target point of a 
domain moves through a threshold:



Geometry of the parameter space

In each region bounded by these hyper surfaces 
the Morse graph is the same.

{(Target point)i = ✓j}i,jChanges in STG when : 

Geometric parameter 
graph



Cusp
Catastrophe

Conley-Morse Graphs

DSGRN database

Parameter Graph

Parameter
space

Combinatorial description of multi parameter dynamical system 
(computable!)

Description in classical 
dynamics



A simple example- a toggle switch

(Gardner, Cantor, Collins; Nature 2000)

ẋ1 = ��1x1 +

⇢
u12 x2 < ✓12

l12 x2 > ✓12

ẋ2 = ��2x2 +

⇢
u21 x1 < ✓21

l21 x1 > ✓21

Ẋ1 = �X1 +

⇢
u12 X2 < �2✓12
l12 X2 > �2✓12

Ẋ2 = �X2 +

⇢
u21 X1 < �1✓21
l21 X1 > �1✓21

X1 := �1x1, X2 := �2x2

Parameter selection (node in the parameter graph)
l12 < �1✓21 < u12

l21 < �2✓12 < u21

Phase space

(u12, u21) (u12, l21)

(l12, l21)(l12, u21)
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FP(0,1)

FP(1,0)



FP(1,0)
l12 < �1✓21 < u12

l21 < �2✓12 < u21

FP(0,1)
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l12 < �1✓21 < u12

u21 < �2✓12

FP(1,0)
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FP(1,0)

DSGRN database for toggle switch



Application to cell cycle progression switch

For larger networks visual inspection of the parameter graph is not 
possible

Use summary descriptions:
•   percentage of the parameter graph that admits certain dynamics
• percentage of the reduced parameter graph that admits certain 

sequence of dynamic behaviors as input changes

Evaluate multiple networks - search in the space of networks



Cancer Yao, et. al., Origin of bistability underlying 

mammalian cell cycle entry, MSB, 2011

Deregulation of the RB–E2F pathway is 
implicated in most, if not all, human cancers. 

Goal: minimal network that
exhibits resettable bistability

Yao et. al. tested 3-node networks on 20,000 random parameter choices 
for bistability, and resettable bistability to find minimal network(s).

Bistability: 
Two equilibria:
(A) Rb ON, E2F OFF = quiescence
(B) Rb OFF, E2F ON = proliferation

A B

Resettable bistability: 
MD: ON -> OFF 
System moves from B to A

MD



Test networks for dynamics phenotype 

• Has input node S
• only one edge between two nodes

Construct all subnetworks with 4 nodes that:

Evaluate each network on prevalence in 
its parameter graph of:
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1999; Hatzimanikatis et al, 1999; Qu et al, 2003; Novak and
Tyson, 2004; Yao et al, 2008). However, these studies have not
attempted to examine the essential regulatory features that
create resettable bistability in mammalian cell cycle entry.

In this study, we modeled and identified the basic gene
circuit underlying resettable Rb–E2F bistable switch by the
criterion of robustness. Robustness is a property of a system to
maintain its functionality against perturbations, such as
cellular noise, genetic variation, and environmental changes
(Kitano, 2004; Stelling et al, 2004). Biological systems often
exhibit robustness as a fundamental characteristic (Barkai and
Leibler, 1997; Alon et al, 1999; Little et al, 1999; von Dassow
et al, 2000; Eldar et al, 2002; Rao et al, 2004; Feinerman et al,
2008; Wang et al, 2008; Krantz et al, 2009). The Rb–E2F
bistable switch is also robustly observed under different
cell culture conditions (Yao et al, 2008), consistent with its
critical roles for the R-point control. Therefore, our starting
hypothesis is that among all possible circuit combinations in
the Rb–E2F network, the actual control circuit underlying the
resettable bistability should be able to generate such switching
property robustly.

By modeling all 768 possible gene circuits derived from
a simplified Rb–E2F network, we identified a minimal
circuit that is able to generate robust, resettable bistability.
Consisting of a coupled positive-feedback loop and a feed-
forward motif, this circuit exhibits resettable bistability against
a wide range of parametric and structural perturbations.

Its unique characteristics reveal basic design features of
the Rb–E2F bistable switch, which is commonly disrupted in
cancer development.

Results and discussion

Model simplification and construction

The Rb–E2F pathway is a complex signaling network
(Figure 1A). It consists of intertwined transcriptional controls,
kinase cascades, and microRNA regulations (Blagosklonny
and Pardee, 2002; Sears and Nevins, 2002). To formulate a
mathematically tractable system, we coarse-grained the
system to reduce network complexity, while keeping its
essential regulatory features. To this end, we combined
redundant and overlapping cellular activities and collapsed
linear signaling cascades (Figure 1). For example, all E2F
activators (E2F1, 2, and 3) were combined into one node EE,
and all Rb family proteins (Rb, p107, and p130) were combined
into another node RP. The linear signaling cascade consisting
of Ras, Myc and CycD/cdk4,6 was collapsed into the node MD;
the cascade consisting of E2F and CycE/cdk2 was collapsed
into the node EE. Overlapping links between collapsed
network modules were also combined. For example, the two
original activation links (from Myc to E2F1, 2, 3, and from Myc
to cdc25A and CycE/cdk2) were combined into one link #7
(from MD to EE); the two mutual-inhibition loops (between Rb
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Figure 1 The Rb–E2F network. (A) A detailed Rb–E2F signaling network (modified from Blagosklonny and Pardee, 2002; Sears and Nevins, 2002) that controls the
G1/S transition of mammalian cell cycle. Gray-shaded ovals indicate overlapping or intermediate signaling activities to be lumped. Circled numbers indicate indexes
of the regulatory links (Supplementary Table S1). (B) A simplified Rb–E2F network. Positive regulatory links are shown in green and negative regulatory links in red.
Link indexes are the same as in (A). (C) The Rb–E2F bistable switch. Once the system at the quiescence state (E2F-OFF state) is stimulated beyond the R-point, it will
stay at the proliferation state (E2F-ON state) even in the absence of continuous stimulation.

Robust design of RB–E2F switch
G Yao et al

2 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited

Figure 4. The full and simplified mammalian cell cycle regulatory
networks from Yao et al. [15] Figure 1. Arrowhead edges mean up-
regulation; blunt edges mean down-regulation. Notice the dual up-
and down-regulation at from EE to RP , EE to EE, and MD to EE
in the simplified network.

<<COMMENT>> Here’s an attempt to define essential. It should

go in another paper I think.!!

<<BEG<<

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 6.1. Let G(V,E) be a regulatory network in which the sign of the regula-

tion is ignored, so that G(V,E) is a directed graph with unsigned edges. Every node

vi 2 V has Si source nodes (in-edges) and Ti target nodes (out-edges). We assume

that Si, Ti > 0 for every vi. Every edge vj ! vi has three parameters, li,j, ui,j, ✓
i,j.

Considering the Si in-edges of vi, there are 2Si
input values of vi:

{li,j1 , ui,j1}⇥ · · ·⇥ {li,jSi
, ui,jSi

}

Yao, et. al., Origin of bistability underlying 

mammalian cell cycle entry, MSB, 2011

(49 networks satisfy this requirement)

1. bistability with S in the middle 
     of its range.

S2. bistability AND Off FP when S is low 
= resettable bistability

S

3. resettable bistability AND On FP when S is high
= hysteresis

S



Results

When S is in the middle range:
35 networks have some bistability

Out of these 28 have some 
resettable bistability



These match top two networks of  Yao 2011

Hysteresis:
two networks where 

full hysteresis 
occupies more than half 
of the parameter graph
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S

MD

RP

EE

S

MD

RP

EE

(a) (b)

Figure 6. Top two networks satisfying full inducibility in at least 50% of
reduced parameters. (a) 56% (b) 50%

Aside from identifying top networks, we can also identify top edges, in the sense of counting

which edges were added most often in the top networks. In Table 3, we show the count of

every edge ordered from most common to least common for every network that had at least

one reduced parameter exhibiting full inducibility. We exclude edges 1 (S ! MD), 6 (RP

a EE), and the self-edge on S since they are always present given our modeling procedure.

The edge numbering scheme is identical to that in Figure 4 (b). There is a nonzero count for

every elective edge; this means that every edge contributed to full inducibility in a number

of networks, with edge 3 contributing the most and edge 4 contributing the least. Of the 15

networks exhibiting some full inducibility, 14 networks included the edge 3, which appears

in both of the top networks in Figure 6 and has strong support in the literature [?, ?]. It

is interesting to note that although edge 2 (EE ! MD) ranks quite highly in this list, it

does not appear in either of the two top networks, while the other four of the top five edges

(edges 3, 9, 7, and 5) appear in at least one of the two top networks. Since edge 7 ranks

above edge 8 may indicate that the positive regulation from MD to EE is more important

for the switching phenotype than the negative regulation. We remark that there is strong

support for edge 7 [?, ?, ?].

<<COMMENT>> what specific previous results do you have in mind? KM

!!



Question:  How good and robust is this network at providing a 
clear resettable on/off signal and support hysteresis?

6 node network analysis

S

Myc

CycD

E2F-Rb

E2F

CycE

2a

2b8 7

1



Test subnetworks

Network Bistability Resettable Hysteresis

1 59% 18.8 0.9%

2 59.7% 32.9% 7.0%

3 58.9% 26.3% 1.8%

4 58.7% 43.3% 14%
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>>END>>
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Figure 8. 6D networks with additional cyclins.

Results:

(1) Network 1: 99.1% bistability, 24.0% resettable bistability, 21.0% inducibility,

1.1% full inducibility

(2) Network 2: 31.0% bistability, 12.5% resettable bistability, 12.6% inducibility,

1.6% full inducibility

(3) Network 3: 10.4% bistability, 2.6% resettable bistability, 3.3% inducibility,

0.16% full inducibility

(4) Network 4: 94.3% bistability, 42.7% resettable bistability, 44.2% inducibility,

7.9% full inducibility
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Comparison across species
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about the correspondence between the edges in 4-node network Figure 4(b) and the 6-node

network in Figure 8 (a)

• Edge 2 (EE ! MD) in Yao et al. [?] corresponds to two edges in our network:

E2F ! Myc and E2F ! CycD because we split the target node MD into Myc and

CycD.

• Edge 5 (EE a RP) corresponds to a path E2F ! CycE a E2F-Rb since we split

EE into E2F and CycE.

• Edge 3 (MD a RP) corresponds to a path Myc ! CycD a E2F-Rb since we split

MD into Myc and CycD.

S
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CycE
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CycE
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CycE

Network 1 Network 2 Network 3 Network 4

Figure 8. 6D networks with additional cyclins.

Therefore our model is a refinement of the 4-node network in Figure 4 (b) where we exclude

edges that make it a multigraph based on the top networks in Yao et al. [?] and Table (3).

Since the edge EE ! MD vanishes in the top two networks Figure 6 and is not well-

supported in the literature, we tested networks in which either E2F ! Myc or E2F !
CycD or both are missing. The four 6D networks that we explored are given in Figure 8.

A notable result summarized in Table 9 is that the Network 4 is the top performing net-

work in all categories and presents most robustly the full inducibility phenotype. This

suggests that regulation from E2F to Myc/CycD is not important for the dynamics of the

In our small search we find 
this as the best network (human): 

Is the structure selected
for its dynamics i.e. for being a robust 

bistable switch?

NETWORKS TO PHENOTYPES 23

network. Further support of this hypothesis comes from consideration of the yeast cell cy-

cle initiation network (START), see Figure 10, where this edge is not present. The START

network of the budding yeast cell cycle has the same topology as E2F-Rb networks, yet

there is no homology among the protein and transcription factors in the two networks.

There, a transcription factor SBF is sequestered by Whi5 in G1. The cell growth leads to

accumulation of kinase Cln3-CDk1 which phosphorylates Whi5 and as a results, releases

SBF from the complex. Released SBF promotes expression of another cyclin Cln2, which

is part of a kinase Cln2-CDk1. This kinase in turn finished phosphorylation of Whi5 and

completes the release of SBF [?, ?, ?, ?]. The analogy with the mammalian restriction

point network in Figure 8(d) is striking.

bistability resettable bistability inducibility full inducibility
Network 1 59.0% 12.3% 12.4% 0.9%
Network 2 59.7% 24.5% 24.8% 7.0%
Network 3 58.9% 15.6% 15.5% 1.8%
Network 4 58.7% 31.0% 31.1% 14.0%

Figure 9. Results for the networks in Figure 8.

S

Cln3

SBF-Whi5

SBF

Cln2

Figure 10. Yeast cycle START network shows striking topological simi-
larity with restriction point network in mammalian cell cycle, in spite of no
underlying homology between individual proteins.

Yeast cell cycle entry:

No homology between 
individual genes

only network structure 
very similar

BistabilityResettable Hysteresis

43.3 % 14 % 5.6%

BistabilityResettable Hysteresis

42.3%



 Discussion
•  Switching systems provide rules to construct state transition graphs
•  DSGRN database describes Morse decomposition for all parameters.
•  The results are rigorous and encourage refinement
• Our results illustrate usefulness of  lattices of attractors/Morse 
decompositions as primary descriptors of dynamics in biological 
systems.
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