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The student learns the behaviors of the larger RelLU
model in the smaller framework.

' m Teacher student training

m Qualitatively closest result
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Estimated polynomial for Lorenz System

f(xy, X2, X3) = max{0, (H;(—0.65382x; + 0.0619x, — 0.0387x3)+
Hy(—0.6692xy + 0.8177x, — 0.5841x3 — 0.0123)+
H3(0.4283x4 + 0.5061x2 + 0.1041x3 — 0.0109) + 1.0125)}
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Data Assimilation

Data assimilation fuses information from prior, model, and observations to
reduce uncertainty.

* We need to estimate the true state of the system( x"""¢ )

* DA combines the following sources of information
*  Prior P"(x): captures our current knowledge of .
* The model: captures our knowledge of the physical laws
that govern the reality

K;;.|_1=M(x;;)+£mudm, =l =%

* Observations: Noisy and sparse measurements of reality at

different times
vi = H; (%) +™, i=1,...,N.

* DA computes the analysis (posterior, 7P*(x) ) that
represents our improved understanding of x""°




Challenges: Complex models and big data
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* Complex Models (10s of processes
and 102 Variables in the state
space).

* Lots and lots of data: 10’
Observations from different

- sources in a period of 24 Hours.
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Image sources: NASA, ECMWF, Weathercnm



Model Errors

We use measurements at sparse locations to obtain information about the global
physical state

ytzh(’Ut)"'Et, EtmN(O,Rt), tzl, ,T.

The model predicted values at observed locations is given by

0 = H(X)y, t=l+#5,T.

Hence the model error in observation space is:
A;=0;—y:€R™, t=1,.--,T.

Hence we can write the evolution equations for the physical system:
vy = M(’Ut_l,@) —I—Jt(vt), t=1,: 1T,
Vi h(vg) + €.



Model Errors

Consider the following NWP model that describes the time evolution of the atmosphere

xt:M(xt—I:r@): t:]“.laT

The atmosphere as an abstract process, evolves in time as follows:

UtZP(Ut_I), t:“‘l,,T
The model state seeks to approximate the physical state:
Xtﬁ%b(’t’t); tzl::T

Assuming that the model state at t — 1 has the "ideal” value, the model prediction will
differ from reality:

Y(vg) = M (YP(vi-1),0) + 04 (vg), t=1,---,T.



Model Errors

We use measurements at sparse locations to obtain information about the global
physical state

Yt:h(vt)+€t; EtNN(O,Rt), t=1,---,71.

The model predicted values at observed locations is given by

o, =H(x¢), t=1,---,T.

Hence the model error in observation space is:
A, =0;—y:€eR™, t=1,.--,T.

Hence we can write the evolution equations for the physical system:
Vg = .M(fut_l,@) —I—ét(vt), t=1,---,T,
yi h(vg) + €.



Observation operator ()
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Solution process involves some form of comparison between what
the model predicts and the observations

On the left: Restrict the solution to compare

On the right: Restrict + Interpolation to compare



If we had access to the model errors

* Good estimates of the discrepancy when available, could improve model predictions by
applying a correction:

Vi & X; + 04.

* We are interested in the following problems
* Estimating the Qol of the model error in advance

6T (©,0,,Ar,0,) & Ay T <L

* |dentifying the physical packages that contribute most to the forecast uncertainty

¢physic3 (At) ~0O.



Numerical experiments

All our experiments are conducted with WRF model and we estimate the uncertainties
and model error for the prediction of precipitation.

Training data: 7 AM to 12 AM (May 15t 2017).

Testing period: 1 PM to 6PM (May 15t 2017).

We use the "analysis provided” by NCEP as a proxy for truth.

Input features which are used to train the machine

Qaermr (@: Or, AT=0t=12PM) ~ Ai—12pm, [(AM < T < 12PM.

Predict the forecast error at 6PM
Ai—epm ~ ¢ (0,07, Ar,04=6pm) , 1PM < 7 < 6PM.



Numerical experiments
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* Analysis at 6 AM
* Used as a proxy for truth for the
training period
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Analys&s at 12 PM

Used as a proxy for truth for the testing
period




Difference between WRF forecasts and Analysis
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Forecasts with and without corrections
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* WRF Forecast

Accumulated Precipitation (mm
R | E=Em == h
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*  WRF Forecast + Corrections

RMSE
ANN 4.3 e-3
RF 5.8e-3




Packages that contribute to uncertainty

The model configuration parameters represent various combinations of different
physics such as microphysics schemes, cumulus parametrizations, short-wave, and long-
wave radiation schemes

The interaction of different physics schemes affect the accuracy of precipitation
forecast.

We construct a physics mapping using the norm and other statistical characterizations
of the model data discrepancy as input features

pPhysics (At=120m, || At=120m]|2) = ©.

WRF model is simulated for each of the possible physical combinations for the current
forecast window and obtain the model errors for the current forecast window.

From all the collected data, 80% is used forlraining the machine and on the remaining
20% we evaluate the model configuration, (&, for the given model errors.
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Packages that contribute to uncertainty

We repeat the test phase for each of the
50 samples with the scaled values of

. g t t
observable discrepancies ( Atflzpm/m
as inputs and obtain predicted physical

combinations éZ'

The large variability in the predicted
physical settings indicate that the WRF
forecast error is sensitive to the
corresponding physical packages.
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