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Korn's Inequalities

Assume © C R" is open, bounded, connected and Lipschitz and

u € HY(Q,R"), where u = (uy, uy, ..., uy) and Vu = (g)‘g)zjzl.
Set

8u,~ + 8UJ'
8XJ 8x,- ’

e(u) = 5(Vut (Vu)T),  eyu)=
Denote
skew(R") ={L=Ax+b : Ac M™*" AT = —A bec R"}.
Assume V is a closed subspace of H1(Q,R") such that

V nskew(R") = {0}.



Korn's Inequalities

Korn’s First and Second Inequalities

1. There exists a constant K; depending only on Q such that

K1(§2)/Q\Vu|2 < (/Q|u\2+/ﬂ\e(u)|2), forany uec HY(Q,R")

2. There exists a constant K, depending only on Q and V such that

Ko (Q, V)/ IVl §/|e(u)|2, forany weV
Q Q

3. There exists a constant K > 0 depending only on € such that for
any u € H*(Q,R"), there exists a skew-symmetric matrix A, such

that
K(Q)/Q|Vuf/4u|2 s/ﬂle(tf)l2



Inequalities of Our Interest

We are interested in sharp Korn inequalities.

Question: How do K1(2) and K»(V, ) depend on Q and V/, when Q is

thin?

» Q is a thin domain (strips, rods, shells,...) with thickness h, then
K1() ~ h® and Kz(V,Q) ~ h? as h — 0. Find o and 3.

» If for instance 3 is known and K»(V,Q) ~ C(V,Q)h”, when h is
sufficiently small, then what is C(V, Q)7

Goal: Find the optimal constants in Korn's inequalities.



Examples

Example 1 (Zero boundary conditions). If
V ={ue H (Q,R") : u(x)=0on 90}, then

1

l’<2(\/7 Q) - 5

Example 2 (Thin rectangle). If Q = [0, h] x [0, /],
V ={ue HY (Q,R?) : u(x,0) = u(x,/) =0}, then

Ko(V,Q) ~ Ch.



Motivation

Why optimal constants?

The problem we were interested in: Buckling of cylindrical shells
under axial compression, (2011).

>

>

Critical buckling load, deformation modes?

Koiter’s formula (1945). A(h) = Ch, where h is the thickness of
the shell, and C depends on the material. The buckling modes are
given by "Koiter’s circle".

It was known, that the buckling load is highly sensitive to
imperfections (shape, load).

We aim to derive Koiter's formula and understand the sensitivity to

imperfections applying the theory of buckling of slender structures,
Grabovsky, Truskinovsky (2007).



Motivation

Ch={(r,0,z) : re[R,R+h], 6€]0,2n], z€[0,L]},

and
u=ué + ugép + u&;,

in cylindrical coordinates, the we impose the B.C.:

» Fixed bottom boundary conditions:
u(r,0,0) = up(r,0,0) = u,(r,0,0) = u,(r,0,L) = up(r,6,L) =0,

Vla
» Breathing cylinder

up(r,0,0) = u,(r,0,0) = uy(r,0,L) =0, u,(r,0,L) = c,

Vs.



Motivation, Problem

The theory of Grabovsky and Truskinovsky implies
A(h) > cK(Cp),
where K(Cy) is the optimal Korn's constant in the second Korn inequality
for Vi or V,.
Whether one has K(V;, C) ~ h?
Answer: NO! K(V;, Cy) ~ hv/h.

Theorem (Grabovsky, H., 2012)

If
K(Ch)

h0 Aci(h)

then the constitutively linearized quotient captures both, the critical load
and the buckling modes.

:O,



Korn's inequalities for perfect cylindrical shells

Theorem (Grabovsky, H., 2012)
There exist absolute constants C; > 0,i = 1,2 such that for any u € V;,

there holds c
Vul? < i / e(u)]?.
L 1vu < | Jetw)

These estimates are sharp, in the sense that the power of h is optimal.
If u=ué& + upéy + u,é&,, then

Ur,e —Ug
Urr —F—

P

— ug,o+u,

Vu= ug r - - Up,z
Uz

Uz r r Uz 2

Ur 2

B



Korn's inequalities for perfect cylindrical shells

Ansatz. We assume R = 1, then
(,ZS?(I’,@,Z) = 7‘/‘/77777 (%,Z)
oh(r,0,2) = rvVhW, (&,z) + AW -,z
o\, o \ a7 g Wonmm \ @750 2 )

¢h(r,0,2) = (r—1)W,,, (%,z) - VhW, (%72) )

where the function W(n, z) is a smooth compactly supported function on
(—=1,1) x (0, L), while the function ¢"(6, z) is extended as a 27-periodic
function in § € R.



Remarks on the Korn inequality, strategy

If u=u,é& + upéy + u,é&,, then

ul’f

>
Vu = ug,r
Uz r

)

Prove the inequality block by block, which means fixing r, 6 and
proving 2D inequalities. For r, 6,z = const, we have the blocks

- - - Ur,r
ug,o+ur

r
uz,0
r

respectively.

Ur,z

)

ur,r

Uy g —Up

r
ug o+ur

z and



Available Tools

We needed Korn’s inequalities with constants decaying like h\/h or
slower!
For instance the cross section 6 = const gives a Korn's second inequality
on a thin rectangle:

Ur,r - ur,z

What is available?

» 6 = const gives a thin rectangle, Korn's second inequality on
rectangles, K ~ h?> Ryzhak 2001?: not applicable.

» z = const gives a thin annulus, again optimal constant scales like
h?, Dafermos 1968, for normalization conditions: not applicable.

» Uniform Korn-Poincaré inequality in thin domains, Lewicka, Miiller
2011, tangential boundary conditions: not applicable.

New inequalities are needed.



A Korn type inequality

Standard approach: It is sufficient to prove a second Korn inequality
subject to Dirichlet type boundary conditions for harmonic displacements.

Theorem (Grabovsky, H., 2012)

Suppose w(x,y) is harmonic in [0, h] x [0, L], and satisfies
w(x,0) = w(x, L). Then

The equality is attained at

w(x) = cosh <7LT <x - ;’)) sin (7).,



The first and a half Korn inequality for rectangles

Theorem (Grabobsky, H., 2012)

Suppose that the vector field U = (u,v) € H'(Q,R?), where
Q =0, h] x [0, L], satisfies u(x,0) = u(x, L). Then for any h € (0,1) and
any L > 0 there holds:

There are no boundary conditions imposed on v(x, y).

» This implies both the first (via Schwartz inequality) and the second
(via Friedrichs inequality) Korn inequalities.

» The scaling of the constant is as needed.



The first and a half Korn inequality for cylindrical shells

Theorem (Grabobsky, H., 2012)

Suppose U € V; or U € V,. Then there exists a universal constant C > 0
such, that for any h € (0,1) and any L > 0 there holds:

» This implies the second Korn inequality, but with h?%.

» Combine with ||u,|® < C||VU|??-|le(U)].



Extensions

An extension to R” for thin domains with nonconstant thickness.

Assume the operator
- 0%u
L(y) = E :a..i
() £ "V 9x;0x;
ij=1

with constant coefficients satisfies

n
Z ajxixj > A|x|* forall xeR", 1)
ij=1
where A > 0, and,

Z|a,-j|§/\ forall 1<j<n. (2)
i=1



Extensions

For x = (x1,%2,...,Xn), let X’ = (x2, ..., Xp).

Theorem (H., 2014)

Let w C R"™! be a bounded and simply-connected Lipschitz domain, let
x1 = ¢(x"): w — R be a positive Lipschitz function with

H =sup,.c,, p(x") and h =infuc, p(x’) > 0. Denote

Q={xeR" : x' €cw, 0<x <p(x')} and assume that the operator
L(u) = Z:’ =1 afj%a“xj with constant coefficients satisfies conditions (1)
and (2). Then there exists a constant C depending on n, A\, A,

L = Lip(y) and the ratio m = H/h such that any u € C3(Q) solution of
L(u) = 0 satisfying the boundary conditions u(x) = 0 on the portion
N={xe€dQ : x' € 0w} of the boundary of Q fulfills the inequality

ul| - |lu
o < ¢ (Lfenl gy, 7).

C = C(n A, L m).



Extensions

Theorem (H., 2014)

Let | > 0, let p; € C[0,/] and let o and ¢} be Lipschitz functions
defined on [0, I]. Assume furthermore that

0 < h=minycpo(p2(y) — ¢1(y)) and H = min,co 1 (02(y) — w1(y))-
Denote Q = {(x,y) € R? : y € (0,1), v1(y) < x < ¢2(y)}. Then there
exists a constant C depending on m = H/h, py = |[¢] |1~ (q)

p2 = |05l (e) and py = [|¢] || (q) such that if the first component of
the displacement U = (u,v) € WY2(Q) satisfies the boundary conditions
u(x) = 0 on the boundary portion T = {(x,y) €9Q : y=0o0ry =1}
in the trace sense, then the strong second Korn inequality holds:

C= C(m7l)17/)27p/1)-

The estimate is sharp.



Extensions

Theorem (H., 2014)

Let L >0, 1, v2, Q, h, H, m, p1, p» and p; be as in the previous
theorem. Then there exists a constant C depending on m, p1, ps and p}
such that if the first component u of the displacement

U = (u,v) € WY2(Q) is L-periodic, then the second Korn inequality

holds: U
vupe < (PO o).

C= C(m7P1»P2,P£)~
L—periodicity is the periodicity of both the function and the gradient.



Recent progress

Consider a shell in the (r, 8, z) variables (8 and z are the principal
directions):

Cyp = [—g,g] x [0,s] x [0, L],

with ., = 0. (this yields a zero Gaussian curvature). If U = (u,, ug, u;),

then ) )
Ur,r A, Ur,o — Kolg A, Ur.z
_ 1 Ao,z a1
VU= |ugr Z;Uo0+ 7,4 Uz + Kolr - Uoz
1 0,z 1
Uz z Teuz,ﬁ T AgA, Ug Tzuz,z
Assume

K = sup|kg| < 0o, Ki=suplrgg| < oo,
0<ag<Ag<by, 0<a,<A,<b, |VA,I|VA <A
where ay, a,, by, b,, A are constants.

This includes cut cones and straight cylinders with arbitrary cross
sections.



Recent progress

The spaces V4 and V5, are the same as before. C will be a constant
depending only on the constants K, k, Ky, a,, ag, b,, by and A.
Theorem (Grabovsky, H., 2015)

For any h € (0,1) and any U € V;, there holds:

[l - lle(U)]

2 <
jvupe < c (1)

+wwmAWww)



Recent progress

Theorem (Grabovsky, H., 2015)
If kg > 0, then for any h € (0,1) and any U € V;, there holds:

IVUI* < e(V)II*.

fll

If kg =0 in a box [01,0,] X [z1, z5], then

IVUI? < 2||( I
h



Work in progress

Assume €, is a shell of revolution given by

h h
Ch=|r(z) — > r(z) + 5| % [0,27] x [0, L].
Then (conjecture)
» If k, <0, then for any h € (0,1) and any U € V;, there holds:

C
IVUIP < -5

le(U)|.
» If K, >0, then

C
IVUI < lle(U)]*.

Theorem (Grabovsky, H., 2015)
For any h € (0,1) and any U € V;, there holds:

1U][ - lle(U)I]

2 <
jvupe < ¢ (1)

+wwm2uww)



