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Focus and Structure of Tutorial

Mathematically, focus on discrete-time stochastic models.

Go to MS 34, Monday 8:30-10:00am, for continuous-time models

Dang Nguyen Hai (8:30am) on Stochastic Differential Equations

Alex Hening (8:55am) and Edouard Strickler (9:20am) on
Piecewise Deterministic Markov Processes

Mads Hansen (9:45am) on quasi-stationarity for continuous-time
Markov chains

Today: Three parts (~ 35 minutes each +5 minute breaks)

|. Environmental Stochasticity for single species
[I. Environmental stochasticity for interacting species

[1l. Demographic stochasticity and quasi-stationarity
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SPECIMEN

COMMENTARII THEORIAE NOVAE
ACADEMIA -4
SCIENTIAR VEM MENSV%QORESORTIS-
IMPERIALIS Daniele Bernoulls.

PETROPOLIT AN AE.

—

TOMVS V.
AD ANNOS clhlyce xxx. et clhlbecexxxs.

‘these terms should then be multi-
plied together. Then of this product
a root must be extracted the degree

of which is given by the number of
all possible cases’ Stearns [2000]

If P[f(0) = f] = £, then

exp(r) = \/fifa...f

PETROPOLI,
TYPIS ACADEMIAE.

Geometric mean
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ON POPULATION GROWTH IN A RANDOMLY
VARYING ENVIRONMENT

By R. C. LEwoNTIN AND D. CoHEN*

DEPAHRTMENT OF BIOLOGY , UNIVERSITY OF CHICAGO,; AND DEPARTMENT OF BOTANY,
HEBREW UNIVERSITY, JERUSALEM

Communicaled February 10, 1969

Abstract.—If a population 1s growing in a randomly varying environment,
such that the finite rate of increase per generation is a random variable with no
serial autocorrelation, the logarithm of population size at any time ¢ is normally
distributed. Even though the expectation of population size may grow in-
finitely large with time, the probability of extinction may approach unity,

owing to the difference between the geometric and arithmetic mean growth rates.

“Anyone who believes exponential growth can go on
forever in a finite world is either a madman or an
economist’ — Kenneth Boulding, economist and
President Kennedy's Environmental Advisor
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200 300 400
time
Stochastic persistence in probability [Chesson, 1982, Ellner, 1984]: For all
£ >0, thereis a 0 > 0 such that

limsup P[X(t) < d|X(0) =x] <¢

I— 00

whenever Xg = x > 0.

arbitrarily unlikely to be below arbitrarily small densities far into
the future
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“This criterion requires that the probability of

1 observing a population below any given density,
should converge to zero with density, uniformly in
time. Consequently it places restrictions on the
expected frequency of fluctuations to low
population levels. Given that fluctuations in the

| environment will continually perturb population
densities, it is to be expected that any nhominated
population density, no matter how small, will

{ eventually be seen. Indeed this is the usual case 1n
stochastic population models and is not an
unreasonable postulate about the real world. Thus

~ . jJareasonable persistence criterion cannot hope to
'] do better than place restrictions on the

frequencies with which such events occur.”
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Density-dependent models
X(t+1) = f(X(r),&(r))X(t) £(1),£(2),...1id. (k)
When do we get persistence? If X(0) =~ 0 but positive, then

t—1

H f(0,£(s))X(0) = r = Ellog f(0,&(1))]

s=0

Theorem [Eliner, 1984, Gyllenberg et al., 1994, Benaim and Schreiber, 2019] |f
r > 0, then (¥ ) is stochastically persistent almost surely and in
probability. If r < 0, then for all = > 0 there is a 0 > 0 s.t.

Pl lim 2 log X(t) = r|X(0) =x] > 1—¢ for x € (0,6)

t—oo T

If x = 0 is accessible (see Benaim and Schreiber [2019]) & r < 0, then
lim;_,oc 1 log X(t) = —r with probability one for X(0) > 0.
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Climate induced extinction?

Demographic stochasticity
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2 checkerspot populations went extinct in 1990s
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Climate induced extinction?

2 checkerspot populations went extinct in 1990s

A simplified version of MclLaughlin et al. [2002]:

X(t+1) = X(t)exp(ag + a1 X(t) + a&(t)?)

w/ £(t) = precipitation. Here r = E[ag + a1£(t)%]

post-1971 rainfall

{}'tT

I I I I I
1960 1970 1980 1990 100 150 200

population apunaance
population anunaance
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Two approaches to showing uniqueness of /i

Monotonicity [Eliner, 1984, Chueshov, 2002]: x — xf(x, &) increasing

Irreducibility [Meyn and Tweedie, 2009, Schreiber et al., 2011]:
P[X(t) € A|X(0) = x| > v(A) for all x > 0, some t > 1, and some
vrobability measure 7 on (0, o)

Both of approaches extend to higher dimensions.

For PDMPs, there exist Lie bracket conditions on the vector fields

See talks by Alex Hening (8:55am) and Eduoard Stricker (9:20am)
in Monday session MS34
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The R* rule [Volterra, 1926, Tilman, 1977]: T he competitor that
suppresses a single limiting resource to the lowest equilibrium value
excludes all other competitors.

10°
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Competitive exclusion principle [McGehee and Armstrong, 1977]: At most

k species can coexist at a stable equilibrium on k limiting
resources.

Paradox of the plankton [Hutchinson, 1961]: " The diversity ... was

explicable primarily by a permanent failure to achieve equilibrium
as the relevant external factors changed.”
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“And NUH is the letter |
use to spell Nutches,
Who live in small caves,
known as Niches, for
hutches. These Nutches
have troubles, the
biggest of which is the
fact there are many
more Nutches than
Niches. Each Nutch in a
Nich knows that some
other Nutch Would like
to move into his Nich
very much. So each
Nutch in a Nich has to
.~ watch that small Nich or

Nutches who haven't got
Niches will snitch.”
Dr. Seuss

y On Beyond the Zebra
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Annual plant model

X;(t) seed density of species i
s1 = s> seed survival
gi(t) germination probability of species i

Y1 = Y5 yield of a plant

Yfgr'(t)Sf
L+ 35 ()5 X(t)

r N . 1
Proposition [Chesson, 1988]:

It g1(t),g2(t) are exchange-
able and Var[g;(t)] > O, then

rl;) > 0 for J #i.
———————————————

Xi(t +1) = Xi(t)

>X
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Storage in Kansas prairies [Adier et al., 2006}
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Fit a stochastic model using a hierarchal Bayesian approach

Computed r; for stochastic and deterministic environments




Introduction ES: Single species ES: Communities Demographic stochasticity References
Q000 OO00000000000000 QOO00C00000000C00e00o o000000000000000000000

The childhood

game

Cryptic coral reef

communities

Buss & Jackson Am. Nat. 1979

Side-blotched
lizards

Sinervo & Lively Nature 1996

Chemical warfare in
E: coli

Kerr et al. Nature 2003
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Lest biologists suspect your model untrue, Keep probability in view.

Populations are far from the continuous matter, or flows,
or fields of classical mathematical physics. They are
essentially discrete and built up by individuals, who may

show great variation in behavior. Jagers [2010]

Demographic stochasticity describes the random
fluctuations in the population size that occur because the
birth and death of each individual is a discrete and
probabilistic event. —Brett Melbourne (2012)

Demographic stochasticity is typically modeled with Markov chains
X(t) on a countable state space &

Dynamics determined by the transition matrix

Pay = PIX{E4+1) = y[X(t) = X|
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Branching processes

X(t) €{0,1,2.3,...} = Z # of individuals in population
offspring distribution: p, probability individual has k offspring

X+ 1=Ylt+ 1)+ Ya(f + 1)+ =4+ Yxplt +1) k)
where Y;(t + 1) are independent with P|Yi(t) = k| = px

Limit Theorem Athreya and Ney [2004] Assume mean number of off-
spring Ro = > ;>0 kpk < +00 and pg > 0. If Ry < 1, then

P[X(t) =0 for some t > 1|X(0) =1] =1
If Ry > 1, then
P[X(t) =0forsomet > 1|X(0)=1] <1

and is the minimal solution to s = 3, pxs® for s € [0, 1].
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“Anyone who believes exponential growth can go on
forever in a finite world is either a madman or an
economist’ — Kenneth Boulding, economist and
President Kennedy's Environmental Advisor

Any population allowing individual variation in
reproduction, ultimately dies out—unless it grows

beyond all limits, an impossibility in a bounded world.
Jagers [2010]
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Example: Host-Parasitoid Dynamics
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Parasitoid: An organism that, during its development, lives in or
on the body of a single host individual, eventually killing that
individual.
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—xample: Host-Parasitoid Dynamics
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—xample: Host-Parasitoid Dynamics

1995: Herren

E sHREE HKiv[E= .

Dr. Hans Rudolf Herren

SWITZERLAND

DR. HANS RUDOLF HERREN, recipient of the 1995 Warld Food Prize, was anly 31
years old when he took a new job in Africa and landed right in the middle of an
unprecedentad crisis: an insact, lhe cassava mealybug, was devastating the
continent s staple crops, and widespread hunger was emerging as a real possibility.
Within ten years, Dr. Herran had aimost single-handedly developed a chemical-free
biological control for the mealybug, eliminated the threat to cassava production,
averted disastrous famine, and saved upward of 20 million lives.
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Resampling from the Past [aidous et al., 1988]

To approximate QSD, define Y(t) on S by:

» Choose Y according to P[‘?;_— y|Y(t) = ]|

- It Y € 8, 58t Y{E+1)=Y

» If Y € &, then update Y(t + 1) according to
HIDLSs<ELIY(s) =¥}

PY(t+1) = y] = ——

Aldous et al. [1988] proved that

J = < L ) =
im = PESSt-1 . YBI=4 = m(x) with probability one

t—00 i

ﬂw ..'.'I. M‘m

80 100 O

.ﬂ.

density X(t)
2

0

References
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California Annuals in Serpentine Soils (k = 2)

A; maximal per-capita seed production of species |
ajj competitive effect of species j on species |

A1

1+ ag1xi(t) + aoxa(t)
Ao

14 C‘Egg){g(f) 5 ﬂ'gl){l(f)

Xl(f -+ l) = Xl(f)

Xz(f -+ 1) = Xg(f)

Schreiber et al. [2018]
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Revenge of the Ricker (k = 1)

Xt11 = Xt exp(r(l — Xx¢)). Kozlovski [2003] = an open and dense set
of positive r values satisfying [ heorem’s assumptions

intrinsic rate of growth r
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Parasitoid: An organism that, during its development, lives in or
on the body of a single host individual, eventually killing that
individual.
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