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Outline
• Particle dynamics vs. continuum dynamics

– when does the continuum description fail?
• Rarefied gas dynamics

– Boltzmann equation
– short range collisions

• Plasmas
– Landau-Fokker-Planck equation
– Coulomb collision - long-rang collisions

• Fluid dynamic (i.e., continuum) limit
• Numerical methods

– Direct Simulation Monte Carlo (DSMC)
– failure in fluid dynamic limit

• Multiscale numerical methods
– robust in fluid dynamic limit
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Gas Flow: Particle vs. Fluid
Particle description
• Discrete particles
• Motion by particle velocity
• Interact through collisions

Fluid (continuum) description
• Density, velocity, temperature
• Evolution following fluid eqtns
(Euler or Navier-Stokes)

When does continuum description fail?
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Flow with Constant Density
(Incompressible)

• Incompressible Euler equations (ρ=1)

• No need for particles
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Compressible Flow

• Compressible Euler equations
– shock waves

– E=total energy = ρ(|u|2/2 + e)

• No need for particles
– but need thermodynamics p = p(ρ,e)
– entropy S is needed
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Compressible Flow

• Compressible Euler equations
– shock waves

– E=total energy = ρ(|u|2/2 + e)

• No need for particles
– but need thermodynamics p = p(ρ,e)
– entropy S is needed
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“S= k log W”

Boltzmann’s grave
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When Does the Continuum 
Description Fail?

• Rarefied gases and plasmas
• Knudsen number Kn=ε

– ε = (mean free path)/(characteristic distance)
– measures significance of collisions
– mean free path = distance traveled by a particle 

between collisions
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Rarefied vs. Continuum Flow:
Knudsen number Kn
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Collisional Effects in the Atmosphere
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Collisional Effects in MEMS and NEMS
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Boltzmann equation for rarefied gas 
dynamics (RGD)

• Statistical description replaces individual particles 
– density function f=f(x,v,t) in phase space (position x, velocity v) at time t
– typical number of 1020 particles would be intractable

• Boltzmann equation for f

– ε = Knudsen number
– Q represents effect of binary collisions

• General existence theorem
– Diperna & Lions 1989
– “renormalized” solution
– uniqueness, conservation of energy are not established

1 ( , )t xf v f Q f fε −+ ∇ =g
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Collisions

• Velocities
-v,w before collision
-v’, w’ after collision

• Conservation of momentum and energy
- v + w = v’ + w’
- |v|2 + |w|2 = |v’|2  + |w’|2

-Two free parameters
- Ω = (ε,θ) on sphere
- θ = scattering angle
- ε = angle of plane of collision

v
v’ w’

w
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Equilibrium and Fluid Limit of 
Boltzmann

• Maxwellian equilibrium
– Q(f,f) = 0 implies f = M(v;ρ,u,T)

• Equilibration
– f=f(v,t) spatially homogeneous
– H= - Entropy
– Boltzmann’s H-theorem 
– H-theorem implies f →M as t →∞

• Fluid Limit (Hilbert, Grad, Nishida, REC)
– ε→0
– f(v,x,t)→ M(v;ρ,u,T), with ρ= ρ(x,t), etc.
– ρ,u,T satisfy Euler (or Navier-Stokes)

( ) log( )H f f f dv= ∫

3 2 2( ) (2 ) exp( ( ) 2 )M T Tρ π − /= − − /v v u

/ 0dH dt ≤
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Plasmas

• Plasma
– gas of ionized 

particles
– 99% of visible 

matter 

• Examples
– fluorescent lights
– sun
– fusion energy 

plasmas
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New experimental facilities are 
driving plasma physics

• ITER 
– tokamak (magnetic 

confinement fusion) 
– reactor chamber 840 m3

– originally the International 
Thermonuclear Experimental 
Reactor 

– international (China, EU, 
India, Japan, Korea, Russia, 
US)

– located in southern France
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Scrape-off
layer

 Kinetic
 Effects

Edge pedestal temperature  profile near the 
edge of an H-mode discharge in the DIII-D 
tokamak. [Porter2000]. Pedestal is shaded 
region.

Schematic views of divertor tokamak and edge-plasma region (magnetic 
separatrix is the red line and the black boundaries indicate the shape of 
magnetic flux surfaces)

Where are collisions signifiant in plasmas?
Example: Tokamak edge boundary layer
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From G. W. Hammett, review talk 2007 
APS Div Plasmas Physics 
Annual Meeting, Orlando, Nov. 12-16. 
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New experimental facilities are 
driving plasma physics

• NIF
– National Ignition Facility
– 192 lasers
– laser-based inertial confinement fusion (ICF) device 
– Lawrence Livermore National Laboratory
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Interactions of Charged Particles 
in a Plasma

• Boltzmann equation for plasma with collisions

• Long range interactions 
– r > λD          (λD =  Debye length)
– Electric and magnetic fields E, B

• Short range interactions
– r < λD
– Coulomb “collisions”
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Landau-Fokker-Planck equation 
for collisions

• Coulomb interactions
– collision rate ≈ u-3 for two particles with 

relative velocity u

• Fokker-Planck equation
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Derivation of Landau Equation
• Linear Boltzmann equation (idealized)

– collision integral

– conservation of mass

• grazing collisions

– derivation of Landau collision operator
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Collisions in Gases vs. Plasmas 

• Collisions between velocities v and v*
– q=| v - v

*
| relative velocity

• Gas collisions 
– hard spheres, σ = cross section area of sphere
– collision rate is σ q 
– any two velocities can collide → smoothing in v

• Plasma (Coulomb) collisions
– very long range, potential O(1/r)
– collisions are grazing, localized as in Landau eqtn
– differential eqtn in v, as well as x,t
– waves in phase space
– Landau damping (interaction between waves and particles)
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Boltzmann → Continuum:
The original multiscale problem

• Maxwell calculated fluid transport 
coefficients
– viscosity coefficient independent of density

• Hilbert performed perturbation expansion to 
derive Euler eqtns from Boltzmann eqtn

2
0 1 ( )f f f Oε ε= + +
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Derivation of Euler equations
• Insert expansion into Boltzmann eqtn

• Expansion of eqtn

2
0 1 ( )f f f Oε ε= + +
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( )( )21, , 0t xv v v Mdv∂ + ∇ =∫ g
• Solveability condition (conservation)

• Equivalent to Euler eqtns

• Using integrals
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Dominant numerical method for dilute flows

• DSMC = Direct Simulation Monte Carlo
– Invented by Graeme Bird, early 1970’s
– Represents density f as collection of particles

– Directly simulates RGD by randomizing collisions
• Collision v,w →v’,w’ conserving momentum, energy
• Random choice of collision angles (ε,θ)

– Particle advection
– Convergence (Wagner 1992)

• Limitation of DSMC
– DSMC becomes computationally intractable near fluid 

regime, since collision time-scale becomes small
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What can mathematics contribute 
to DSMC?

• Traditionally, math contributed little to 
DSMC
– only difficulties are computational complexity
– no stability, consistency issues

• Flows near fluid limit
– DSMC becomes intractable
– math needed to design methods that overcome 

this difficulty!
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Current Multiscale Methods: 
What’s New?

• Current multiscale methods
– e.g. quasi-continuum, HMM, equations-free method
– combine multiple scales and multiple physics into a single 

numerical method

• Multiscale methods for dilute fluids and plasmas (my 
title!)
– applicable in near fluid regime
– combine fluid and particle descriptions
– provide considerable acceleration over traditional methods
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Accelerated Methods for RGD
• Domain decomposition

– DSMC in one region, CFD in another region
– Hash & Hassan (1996), Letallec & Mallinger (1997), Tiwari & Klar (1998), 

Garcia, Bell Crutchfield & Alder (1999), Boyd (2006),…
• Asymptotic-preserving methods

– Fluid limit for numerical method consistent with limit for Boltzmann
– Larsen (neutron transport), Levermore, Jin, Degond, …

• Hybrid methods
– Combine fluids and Monte Carlo throughout space
– Roveda, Goldstein & Varghese (1998), Pareschi & REC (1999), Pareschi & 

Russo (2000), Crouseilles, Degond & Lemou (2004), REC, Luo, Pareschi
(2006)

• Complex particle methods
– add additional degrees of freedom to particles, representing fluid state
– not closely related to the other types of methods
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Domain decomposition

fluidfluid

Boltzmann

shock

• Method required for finding domain interfaces
• Fluid/particle BCs needed across interfaces
• On Boltzmann side of interface, computation is still stiff
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Asymptotic Preserving Methods

Boltzmann eqtn (ε) Fluid eqtns
ε→0

Boltzmann solver 
(ε,N,dx)

limit of Boltzmann 
solver (N,dx)

ε→0

N→∞
dx→0

N→∞
dx→0
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Hybrid method
• Combine fluid and particle methods
• Pareschi & REC

– Representation of density function as combination of Maxwellian and 
particles

– ρ, u, T solved from fluid eqtns, using Boltzmann scheme for CFD
– DSMC used for particles

• Thermalization coefficient α
– independent of v (cf. plasma)
– α = 0  ↔ DSMC
– α = 1  ↔ CFD
– Remains robust near fluid limit
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Comparison of DSMC (blue) and IFMC (red) for a 
shock with Mach=1.4 and Kn=0.019 

Direct convection of Maxwellians
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Comparison of DSMC (contours with num values) 
and IFMC (contours w/o num values) 

for the leading edge problem. 
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Hybrid method for plasmas
Thermalization/Dethermalization Method

• Hybrid representation (as in RGD)

• Thermalization and dethermalization (T/D)
– Thermalize particle (velocity v) with probability pt

• Move from g to m

– Dethermalize particle (velocity v) with probability pd
• Move from m to g

( )F v m g= +
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Hybrid Method for Bump-on-Tail
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Ion Acoustic Waves

– kinetic description 
needed for ion 
Landau damping and 
ion-ion collisions

– wave oscillation and 
decay shown at right

– agreement with 
“exact” solution 
from Nanbu

Nanbu (  ), hybrid ( ), older hybrid method (  )
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Conclusions and Prospects

• Lots of opportunities for mathematics in 
plasma physics

• Current simulation methods for kinetics have 
trouble in the fluid and near-fluid regime

• Math leading to new methods that are robust in 
fluid limit


