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Invasion models: Fisher’s travelling wave 
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Development of a normal nervous system in the intestine Development of a normal nervous system in the intestine 

Cell labelling, tracking paths and progeny 

Kulesa et al. Development, 316  (2008) 



or 

Motility Proliferation 

Agent-based models 
Lattice-based, stochastic, exclusion process 

No death 

Blue agents, yellow lattice sites 



t=0 

 
 

Reproduces Fisher’s travelling wave 

predictable 

Column average 



~Ben Binder 

Frontal 
expansion 

Frontal expansion 

t = 0 



front 

frontal expansion 

Variability in individual contributions 

Clonal inequality 
How common are these behaviors? 

What about experiments? 

 



One labeled cell…passes label to progeny 
 

Neural gut Aneural gut 

Cloning in a crowd experiments:  
lineage tracing 



Cloning in a crowd results 
Cell count Frequency 
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Cloning in a crowd results 

Clonal inequality  
is real 

A few ‘superstars’  
have a disproportionate 
contribution to the final 

population 
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Superstars are always present 

Individual simulations 
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                Pp= probability of proliferation      
 

Pp= 0.01 

Pp= 0.1 

Superstars are not freaks – EVERY colonizing population, 
EVERY time, has a few superstars!  



t = 0 
Agent lineage tracing 

2 simulations: largest and 2nd largest tracings 



Analogy to a lottery 



Differences 

Single clone/lineage 

uncolonized colonized 

Every clone/lineage 



If tracing every cell lineage is not possible 

•  From cell generation data, can we estimate cell 
lineages? 

 
•  Propose new technique 
 
 

•  Track generations: Kikume GR 

Nishiyama et al. Nature Neuroscience (2012)     



Spatial distribution of generation number 
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Can we describe with PDEs? 



Multi-species model of cell generations 



Multi-species model of cell generations 
Generation i and time step k 



exclusion 
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Multi-species model of cell generations 
Generation i and time step k 

Master equation for motility part 
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Multi-species model of cell generations 
Generation i and time step k 

Mean-field approximation 

Master equation for motility part 
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Multi-species model of cell generations 
Generation i and time step k 

Mean-field approximation 
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Master equation for motility part 

Multi-species model of cell generations 
Generation i and time step k 

Mean-field approximation 

Continuum limit 
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From regular generation profiles, can we 
predict lineage variability and superstars? 
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From regular generation profiles, can we 
predict lineage variability and superstars? 
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Generation transition probabilities 
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Generating cell lineage from generation info 

•  Simulate G-W process j = 1, 2. …n 

•  Run until all branching trees terminate 

•  Require a measure of inequality 
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Generation PDEs &  
GW constructed lineages 

G
eneration 

 
•  Growing tissues and domain growth 

•  Other PDEs 

•  Potential technique for deducing lineage data 
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