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Manifold vs. Riemannian Manifold




Planar Curves

C(p):[0,1] € R' = R”
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Arc-length and Curvature
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Linear Transformations
Affine: {(,5V = A{x,y} +b,

Euclidean: A=|u,.i,|, where (i,,i,)=0 and (i,iz,)=1.
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Linear Transformations

Equi-Affine: {(£,79}" = A{x,y} +b, det(A)=1.
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Differential Signatures

= Euclidean invariant signature {37 /{}




Differential Signatures

= Euclidean invariant signature {37 /{}
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Learning invariants

-Invariant
dian-Curvature
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Robustness to noise

Differential Invariant Integral Invariant Network Invariant

ost

Differential Invariant Integral Invariant Network Invariant

Pai Wetzler K. ICLR 2017




Differential Signatures

= Euclidean invariant sighature {%(S), K s (S)}
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Cartan Theorem



Euclidean arclength

= Length is preserved, thus 1 = <CS, Cs>
— <Cpp87 Cpp8>
= (C,,C,)p?
/

ds® = (O, Cp>dp2
ds = |Cp|dp



Equi-affine arclength

= Area is preserved, 1= (Cy,Cuy)
— (Cypos 5 (Cop )
= (Cp, Cpppy + C dd 0)Ds
C/Areail = (Cp, Coppy )i
Co = (Cp, C'pp)p%

dv = (C,, Cpp)3dp = (Cy, Css)V3ds = |k|Y3ds



Scale inv. arclength

= Ratio is preserved, 1 — @
P
\Cp\ = k|Cy
—_— = k|Cppo]
= k|Cplpo

df = k|C,|dp = kds



Scale invariance?
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Aflalo Raviv K. SIAM IS



From curves to surfaces

dr? = (zydu + z,dv) = 22 du® + 22,2, dudv + 22 dv?

ds* = dz*+ dy* + dz*
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From curves to surfaces

d5® = kiko(dz® + dy® + dz?)
B K S? K{(Sy,Sy) du
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FarThes’r Point Sampling Voronoi

= [K[(Sw; Sw;)

Scale invariant #
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. Generalized MDS




Surface Laplacian




gij = (SwisSw,)
A ¢.=A9. Eigenfunctions




Scale invariant metric gi; = |K|{Sw,;,Sw,)
A ¢.=A9. Eigenfunctions
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Functional MC(PS Ovsjanikov et al. 2012
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Fun&eébinal Maps
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Halimi & K. 2018



Self functi nal mas
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Halimi & K. 2018



Eigenfunctions

Halimi & K. 2018



Isometry classes
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Halimi & K. 2018
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Richardson Sela K. ICCV 2017






Our domain

Computer
Graphics

Image

Processing

Computer
Vision



Coded light 3D scanner

INVISI®N intel

Ultimate 3D Experience
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= RealSense
refined
via SfS

sR&BLLELsion: Real-Time High Precision [ Recovery Or-El/Rosman Wetzler Bruckstein K. CVPR 2015
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Face recognition challenges

S LA LES OFEAMER

L9\

——— e e e ® —— —

P

KEHREN

CHRISTOPHE MICHEL

29 Jan 1377
feit} w3
() s
'h FRANCE
02 Mar 2004 National
; Passport Canter
01 Mar 2014

See Page 24




Face decomposition
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Expressions =~ Isometries
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ERROR DISTRIBUTION

= Extrinsic (Euclidean) geometry

Bronstein2 K. 2007

(Riemannian) geometry

expressions
identity



Most models have exceptions

from youtube



inf |d,(@(5),0(s") = d(s.5)

e Morphing

Tex_fr,u_rje

Bronstein? & K. 06



Remarkable result

Facial images can be linearly reconstructed using responses of ~200 face cells

Chang & Tsao The code for facial identity in the primate brain. Cell, 2017



Vetter & Blanz, A morphable model for the synthesis of 3D faces, Siggraph 1999
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Learning using Axiomatic Knowledge



Learning using Axiomatic Knowledge

We know how to model faces

Richardson Sela Or-El K. CVPR'17



Face reconst h evolution

-2 =20

Richardson Sela K. 3DV'16/ Richardson Sela Or-El K. CVPR'17/ Richardson Sela K. ICCV'17



More results

Richardson Sela Or-El K. CVPR'17



Richardson Sela K. ICCV 2017



Analyzing Facial Expressions

= 1800s - Charles Bell,
Duchenne de Bouloghe

= Darwin - Expressions
as an evolutionary
mechanism
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Pant-hoot ace SCre: Bulging-lip face

Buwel ~1680 - Paul Ekman 1970,



Universal Expressions &

Emotions

Paul Ekman 1970



Universal Expressions &
Emotions

= Joy (Happiness)

= Sadness

= Fear

= Disgust

= Anger

= Contempt

= Surprise

Sounds 1‘c1m|||c1r7

Paul Ekman 1970 Insideout - Disney Studios



Facial Action Coding System

= Taxonomized facial
movements by
appearance based on
muscle clusters &
contractions

Lip Corner | Lower Lip
Depressor | Depressor

. Li
Ekman, Friesen 1978 Tightznel' Pressor

Upper Face Action Units

Upper L1d
Raiser




W/0O Macaque Monkeys

What can be said about expressions?

: Inner Brow Raiser

: Quter Brow Raiser

(((/m, > . p ; ;,,’ N

: Lip Corner Puller . .
A SN : Upper Lid Raiser
' 1 L . Q v
\ ; . N
\ - Lip Strecher : Upper Lip Raiser ,( 4
. Lip Pressor '{ A
: NN : Lip Corner Dpressor
. Jaw Drop :
N ‘fi—
: Chin Raiser : : Chin Raiser
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Breuer & K. A deep learning perspective on the origin of facial expressions, BMVC/workshops 2017



W/O macaque monkeys

Breuer & K. A deep learning perspective on the origin of facial expressions, BMVC/workshops 2017



Visualizing CNN Filters

Breuer & K. A deep learning perspective on the origin of facial expressions, BMVC/workshops 2017







