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OverviewOverview

• Quick look at High Performance • Quick look at High Performance 
Computing

T 500Top500

• Challenges for Math Software
Linear Algebra Software for Multicore
and Beyond
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Performance Development
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Performance Development & Projections
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Performance Development & Projections
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LANL Roadrunner 
A P t l S t i 2008A Petascale System in 2008

“Connected Unit” cluster
192 Opteron nodes
(180 w/ 2 dual-Cell blades

≈ 13,000 Cell HPC chips
• ≈ 1.33 PetaFlop/s (from Cell)

≈ 7 000 dual core Opterons(180 w/ 2 dual Cell blades
connected w/ 4 PCIe x8 links)

≈ 7,000 dual-core Opterons
≈ 122,000 cores

17 clusters

2nd stage InfiniBand 4x DDR interconnect
(18 sets of 12 links to 8 switches)

Cell chip for each core

2nd stage InfiniBand interconnect (8 switches)

Based on the 100 Gflop/s  (DP) Cell chip

Hybrid Design (2 kinds of chips & 3 kinds of cores)
Programming required at 3 levels.

Dual Core Opteron Chip



Top10 of the June 2008 List

Computer Rmax
[TF/s]

Rmax / 
Rpeak Installation Site Country #Cores Power

[MW]
MFlops/ 
Watt

1 IBM / Roadrunner
BladeCenter QS22/LS21

1,026 75%75% DOE/NNSA/LANL USA 122,400 2.35 437437
BladeCenter QS22/LS21

2 IBM / BlueGene/L
eServer Blue Gene Solution

478 80%80% DOE/NNSA/LLNL USA 212,992 2.33 205205

3 IBM / Intrepid
Blue Gene/P Solution

450 81%81% DOE/OS/ANL USA 163,840 1.26 357357
Blue Gene/P Solution

4 SUN / Ranger
SunBlade x6420

326 65%65% NSF/TACC USA 62,976 2.00 163163

5 CRAY / Jaguar
C XT4 Q dC

205 79%79% DOE/OS/ORNL USA 30,976 1.58 130130
Cray XT4 QuadCore

6 IBM / JUGENE
Blue Gene/P Solution

180 81%81% Forschungszentrum 
Juelich (FZJ) Germany 65,536 0.50 357357

7 SGI / Encanto
SGI Altix ICE 8200

133.2 77%77% New Mexico Computing 
Applications Center USA 14,336 0.86 155155

SGI Altix ICE 8200 Applications Center

8 HP / EKA
Cluster Platform 3000 BL460c

132.8 77%77% Computational Research 
Lab, TATA SONS India 14,384 1.60 8383

9 IBM / Blue Gene/P 
Solution 112 81%81% IDRIS France 40,960 0.32 357357

8

10 SGI / Altix ICE 8200EX 106 86%86% Total Exploration 
Production France 10,240 0.44 240240
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ORNL/UTK Computer Power Cost Projections 
2007-2012

O th t 5• Over the next 5 
years ORNL/UTK 
will deploy 2 large p y g
Petascale systems

• Using 4 MW today, 
going to 15MWgoing to 15MW 
before year end

• By 2012 could be y
using more than 
50MW!!
Cost estimates• Cost estimates 
based on $0.07 per 
KwH

Cost Per Year
Includes both DOE and NSF systems.

Power becomes the architectural 
driver for future large systems



Something’s Happening Here…Something’s Happening Here…
• In the “old 

days” it was: 
h  

From K. Olukotun, L. Hammond, H. 
Sutter, and B. Smith

each year 
processors 
would become 
faster

A hardware issue just became a 
software problem

faster
• Today the clock 

speed is fixed or 
getting slowergetting slower

• Things are still 
doubling every 
18 24 months18 -24 months

• Moore’s Law 
reinterpretated.

Number of cores Number of cores 
double every 
18-24 months 07 11



MulticoreMulticore
• What is multicore?

A multicore chip is a single chip (socket) that A multicore chip is a single chip (socket) that 
combines two or more independent processing 
units that provide independent threads of units that provide independent threads of 
control

• Why multicore?Why multicore?
The race for ever higher clock speeds is over.
• In the old days, new the chips where fasterIn the old days, new the chips where faster

• Applications ran faster on the new chips

• Today new chips are not faster, just have more 
processors per chip

• Applications and software must use those extra processors to 
become faster

12



Power Cost of FrequencyPower Cost of Frequency

• Power ∝ Voltage2 x Frequency (V2F)

• Frequency ∝ Voltage

P F 3• Power ∝Frequency3
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Power Cost of FrequencyPower Cost of Frequency
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Today’s Today’s MulticoresMulticores
98% of Top500 Systems Are Based on 98% of Top500 Systems Are Based on MulticoreMulticore

282 use Quad-Core
204 use Dual-Core

3 use Nona-corep yp y

IBM Cell (9 cores)

Intel Clovertown (4 cores)

Sun Niagra2 (8 cores)

Intel Polaris (80 cores)SciCortex (6 cores)

15

IBM BG/P (4 cores)
AMD Opteron (4 cores)



And then there’s the GPU’s And then there’s the GPU’s 
NVIDIA’s NVIDIA’s Tesla T10PTesla T10P
• T10P chip

240 cores; 1.5 GHz240 cores; 1.5 GHz
Tpeak 1 Tflop/s - 32 bit floating point
Tpeak 100 Gflop/s - 64 bit floating point 

• S1070 board
4 - T10P devices; 
700 Watts

• C1060 card
1 – T10P; 1.33 GHz
160 Watts
T k 887 Gfl /  32 bi  fl i  iTpeak 887 Gflop/s - 32 bit floating point
Tpeak 88.7 Gflop/s - 64 bit floating point 16



What’s NextWhat’s Next? ? MulticoreMulticore to to ManycoreManycore

All Large CoreAll Large Core
Mixed LargeMixed Large
andand
Small CoreSmall Core Many Small CoresMany Small CoresS all Co eS all Co e Many Small CoresMany Small Cores

All Small CoreAll Small Core

Different Classes of Chips
H

+ 3D Stacked Many Floating-

Home
Games / Graphics
Business 
Scientific

SRAMSRAM

MemoryPoint Cores
The question is not whether this will
happen but whether we are ready



Coding for an Coding for an Abstract Abstract MMulticoreulticore

Parallel software for multicores should have 
two characteristics:two characteristics:
• Fine granularity: 

• High level of parallelism is neededHigh level of parallelism is needed
• Cores will probably be associated with relatively small local 

memories. This requires splitting an operation into tasks that 
operate on small portions of data in order to reduce bus trafficoperate on small portions of data in order to reduce bus traffic 
and improve data locality.

• Asynchronicity: 
A th d f th d l l ll li d l it• As the degree of thread level parallelism grows and granularity 
of the operations becomes smaller, the presence of 
synchronization points in a parallel execution seriously affects 
the efficiency of an algorithmthe efficiency of an algorithm.



ManyCoreManyCore -- Parallelism for the Parallelism for the 
MassesMasses

• We are looking at the following g g
concepts in designing the next 
numerical library implementationy p

Dynamic Data Driven Execution
Self Adaptingp g
Block Data Layout
Mixed Precision in the AlgorithmMixed Precision in the Algorithm
Exploit Hybrid Architectures
Fault Tolerant Methods Fault Tolerant Methods 

19



Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our 

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster 

computing and message passing
Rethink and rewrite the applications, 
algorithms  and softwarealgorithms, and software

• Numerical libraries for example will 
changechange

For example, both LAPACK and 
ScaLAPACK will undergo major changes 

20

g j g
to accommodate this



A New Generation of Software:A New Generation of Software:
Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on 
Level 1 BLAS(Vector operations) - Level-1 BLAS

operations

LAPACK (80’s) Rely on LAPACK (80 s)
(Blocking, cache 
friendly)

Rely on 
- Level-3 BLAS 

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on 
- PBLAS Mess Passing

PLASMA (00’s) Rely on 
New Algorithms 
(many-core friendly)

- a DAG/scheduler
- block data layout
- some extra kernels

Those new algorithms 
h l l it th l ll ( lti t l ti )- have a very low granularity, they scale very well (multicore, petascale computing, … )

- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels 

Those new algorithms need new kernels and rely on efficient scheduling algorithms.
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A New Generation of Software:A New Generation of Software:
Parallel Linear Algebra Software for Parallel Linear Algebra Software for MulticoreMulticore Architectures (PLASMA)Architectures (PLASMA)
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Steps in the LAPACK LUSteps in the LAPACK LU
DGETF2 LAPACK

(Factor a panel)

DLSWP LAPACK
(B k d )

DLSWP LAPACK

(Backward swap)

DLSWP LAPACK
(Forward swap)

DTRSM BLAS
(Triangular solve)

25
DGEMM BLAS

(Matrix multiply)



LU Timing Profile (4 processor system)LU Timing Profile (4 processor system)
Threads – no lookahead

Time for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2

DLSWP

DLSWP

DTRSM

DGEMMBulk Sync PhasesBulk Sync Phases



Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

Event DrivenEvent DrivenEvent Driven Event Driven 
MultithreadingMultithreading

Ideas not new.Ideas not new.

Many papers use theMany papers use the
DAG approach.DAG approach.

27

Reorganizing 
algorithms to use 

this approach



Achieving Achieving Fine Fine GGranularityranularity
Fine granularity may require novel data formats to 
overcome the limitations of BLAS on small chunks o e co e e a o s o S o s a c u s
of data.

Column-Major



Achieving Achieving Fine Fine GGranularityranularity
Fine granularity may require novel data formats to 
overcome the limitations of BLAS on small chunks o e co e e a o s o S o s a c u s
of data.

Column-Major Block data layout



LU LU –– 16 Core 16 Core 
(8 Socket (8 Socket -- Dual Core Dual Core OpteronOpteron 2.2 GHz)2.2 GHz)

1 LAPACK (BLAS Fork-Join Parallelism)

40
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1. LAPACK (BLAS Fork Join Parallelism)
2. ScaLAPACK (Mess Pass using mem copy)

3. DAG Based (Dynamic Scheduling)
4. Intel MKL Library
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CholeskyCholesky on the CELLon the CELL

• 1 CELL (8 SPEs)
186 Gflop/s• 186 Gflop/s

• 91 % peak
• 97 % SGEMM peak

2 CELL  (16 SPE )• 2 CELLs (16 SPEs)
• 365 Gflop/s
• 89 % peak

k• 95 % SGEMM peak

Single precision results on the Cell



If We Had A Small Matrix ProblemIf We Had A Small Matrix Problem
• We would generate the DAG, 

find the critical path and 
t  itexecute it.

• DAG too large to generate ahead 
of timeof time

Not explicitly generate
Dynamically generate  the DAG as 
we gowe go

• Machines will have large 
number of cores in a distributed 
fashion

Will have to engage in message 
passingp g
Distributed management
Locally have a run time system



The DAGs are LargeThe DAGs are Large
• Here is the DAG for the QR factorization on a 

20 x 20 matrix20 x 20 matrix

For a large matrix say O(106) the DAG is huge• For a large matrix say O(106) the DAG is huge
• Many challenges for the software 34



Each Node or Core Will Have A Run Time Each Node or Core Will Have A Run Time 
System System 

some dependencies 
satisfied
waiting for all dependencies

BIN 1

all dependencies 
satisfied
some data deliveredsome data delivered
waiting for all dataBIN 2

all data delivered
waiting for execution

35

waiting for execution

BIN 3



Performance of Single Precision Performance of Single Precision 
on Conventional Processorson Conventional Processorson Conventional Processorson Conventional Processors

• Realized have the 
similar situation on 
our commodity 

SizeSize SGEMM/SGEMM/
DGEMMDGEMM SizeSize SGEMV/SGEMV/

DGEMVDGEMV
AMD Opteronour commodity 

processors.
• That is, SP is 2X as 

fast as DP on many 
systems

AMD Opteron
246 30003000 2.002.00 50005000 1.701.70

UltraSparc-IIe 30003000 1.641.64 50005000 1.661.66
Intel PIII systems

• The Intel Pentium 
and AMD Opteron
h  SSE2

Coppermine 30003000 2.032.03 50005000 2.092.09

PowerPC 970 30003000 2.042.04 50005000 1.441.44
Intel 

Woodcrest 30003000 1 811 81 50005000 2 182 18have SSE2
• 2 flops/cycle DP
• 4 flops/cycle SP

Woodcrest 30003000 1.811.81 50005000 2.182.18

Intel XEON 30003000 2.042.04 50005000 1.821.82
Intel Centrino

Duo 30003000 2.712.71 50005000 2.212.21

Single precision is faster because:
• Higher parallelism in SSE/vector units

• IBM PowerPC has 
AltiVec
• 8 flops/cycle SP

4 fl / l  DP
g p

• Reduced data motion 
• Higher locality in cache

• 4 flops/cycle DP
• No DP on AltiVec



32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
• A long time ago 32 bit floating point was 

used
S ill d i  i ifi   b  li i dStill used in scientific apps but limited

• Most apps use 64 bit floating point
Accumulation of round off errorAccumulation of round off error

• A 10 TFlop/s computer running for 4 hours performs > 1 
Exaflop (1018) ops. 

Ill conditioned problemsp
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

• Sometimes need extended precision (128 bit fl pt)Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in 
some parts

• Mixed precision a possibility
37

• Mixed precision a possibility
Approximate in lower precision and then refine 
or improve solution to high precision.



Idea Goes Something Like This…Idea Goes Something Like This…
• Exploit 32 bit floating point as much as 

possible.
Especially for the bulk of the computation

• Correct or update the solution with selective 
use of 64 bit floating point to provide a 
refined results

• Intuitively: 
Compute a 32 bit result, 
C l l t   ti  t  32 bit lt i  Calculate a correction to 32 bit result using 
selected higher precision and,
Perform the update of the 32 bit results with the 

38

Perform the update of the 32 bit results with the 
correction using high precision. 



MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement
It ti  fi t f  d  t    A   b   k thi  

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

x  L\(U\b) ( )
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)x = x + z DOUBLE O(n )
r = b – Ax DOUBLE O(n2)

END

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.

39



MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement
It ti  fi t f  d  t    A   b   k thi  
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END

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.
It can be shown that using this approach we can compute the solution It can be shown that using this approach we can compute the solution 
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision

40

( ) p
• O(n2) work is done in high precision

• Problems if the matrix is ill-conditioned in sp; O(108)



Results for Mixed Precision Iterative 
Refinement for Dense Ax = b

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf) 
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 Cray X1 (libsci)
8 IBM Power PC G5 (2 7 GHz) (VecLib)8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

• Single precision is faster than DP because:
Higher parallelism within vector units

4 ops/cycle (usually) instead of 2 ops/cycle
Reduced data motionReduced data motion 

32 bit data instead of 64 bit data
Higher locality in cache

More data items in cache



Results for Mixed Precision Iterative 
Refinement for Dense Ax = b

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf) 
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 Cray X1 (libsci)
8 IBM Power PC G5 (2 7 GHz) (VecLib)8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

A hi (BLAS MPI) # DP S l DP S l #Architecture (BLAS-MPI) # procs n DP Solve
/SP Solve

DP Solve
/Iter Ref

# 
iter

AMD Opteron (Goto – OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto – OpenMPI MX) 64 32000 1 90 1.83 6

• Single precision is faster than DP because:
Higher parallelism within vector units

4 ops/cycle (usually) instead of 2 ops/cycle
Reduced data motion

1.90 1.83

Reduced data motion 
32 bit data instead of 64 bit data

Higher locality in cache
More data items in cache



Sparse Direct Solver and Iterative Sparse Direct Solver and Iterative 
RefinementRefinement

MUMPS package based on multifrontal approach which 
generates small dense matrix multiplies

1.8

2
Speedup Over DP

Opteron w/Intel compiler Iterative Refinement
Single Precision

1

1.2

1.4

1.6

0.4

0.6

0.8

1

G64
Si10H16
airfoil_2d
bcsstk39
blockqp1
c-71
cavity26
dawson5
epb3
finan51
heart1
kivap0
kivap0
mult
nasa
nem qa8

rm to v w

Ite ra tiv e  R e fin e me n t

0

0.2
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d 9 p1 6 n5 512
t1 p004
p006
lt_dcop_01
sasrb
emeth26
a8fk
ma10
torso2
venkat01
wathen120

Tim Davis's Collection, n=100K - 3M



Sparse Iterative Methods (PCG)Sparse Iterative Methods (PCG)
• Outer/Inner Iteration Inner iteration:

In 32 bit floating point
Outer iterations using 64 bit floating point

44
• Outer iteration in 64 bit floating point and inner 

iteration in 32 bit floating point



Mixed Precision Computations forMixed Precision Computations for
Sparse Inner/OuterSparse Inner/Outer--type Iterative Solverstype Iterative Solvers

1.75
2

2.25
2.5

Speedups for mixed precision 
Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG2, GMRES2, PCG2, and PGMRES2 with diagonal prec.)

(Higher is better)

0 5
0.75

1
1.25
1.5

CG
PCG

(Higher is better)

2

2

2

1 25

0
0.25
0.5

11,142 25,980 79,275 230,793 602,091

CG
GMRES
 PGMRES 

2

0.75

1

1.25
Iterations for mixed precision 
SP/DP iterative methods vs DP/DP
(Lower is better)

0.25

0.5
Machine:

Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:
Relative to r0 residual reduction (10-12)
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0
11,142 25,980 79,275 230,793 602,091

6,021        18,000        39,000       120,000     
240,000

Matrix size

Condition number



Cray XDCray XD--1 1 ((OctigaBayOctigaBay Systems)Systems)
Experiments with Field Programmable Gate Array (FPGA)
Specify arithmetic precision 

Six Xilinx Virtex-4 Field
Programmable Gate Arrays
(FPGAs) per chassis(FPGAs) per chassis
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Mixed Precision Iterative Refinement
- FPGA Performance Test - Junqing Sun et al

Characteristics of multiplier on an FPGA* (using DSP48)
D t F t DSP48 F ( MH ) GFLOP

q g

Data Formats DSP48s Frequency ( MHz) GFLOPs

s52e11 (double) 16/96 237 1.42

s51e11 16/96 238 1.43

s50e11 9/96 245 2.61

s34e8 9/96 289 3.08

s33e8 4/96 292 7.01

s23e8 (single) 4/96 339 8.14

s17e8 4/96 370 8.88

s16e8 1/96 331 31.7831.78

s16e7 1/96 352 33.79

s13e7 1/96 336 32.26

TENNESSEE ADVANCED COMPUTING LABORATORY

* XC4LX160-10



Mixed Precision Iterative RefinementMixed Precision Iterative Refinement
-- Random Matrix Test Random Matrix Test -- JunqingJunqing Sun et alSun et alq gq g

Refinement iterations for customized formats (sXXe11).
Random matrices (average number of iterations/random matrices)

More Bits

Mantissa Bits
Problem Size 12 16 23 31 48 52

128 8.9 4 2 1 1 0

256 11.1 5.1 2.1 1 1 0

512 19.7 6.1 2.5 1 1 0512 19.7 6.1 2.5 1 1 0

1024 28 6.3 2.6 1 1 0

2048 - 9.3 3 1.3 1 0

4096 - 13 3 3 1 1 43 1 0

More Iterations

4096 - 13.3 3.1 1.43 1 0

TENNESSEE ADVANCED COMPUTING LABORATORY



Mixed Precision Hybrid Direct SolverMixed Precision Hybrid Direct Solver
-- Profiled Time* on CrayProfiled Time* on Cray--XD1 XD1 -- JunqingJunqing Sun et alSun et al

1400
1600

LU w Partial Pivoting using variable precision on an FPGA

800
1000
1200
1400

e 
(u

s)

200
400
600tim

e

0
double s31e8 s16e7

Data types for LU on FPGAs
LU communication triangular solvers Refinement

* For a 128x128 matrix

High Performance Mixed-Precision Linear Solver for FPGAs,
Junqing Sun, Gregory D. Peterson, Olaf Storaasli, To appear IEEE TPDC



Intriguing PotentialIntriguing Potential
• Exploit lower precision as much as possible

Payoff in performance
• Faster floating point g p
• Less data to move

• Automatically switch between SP and DP to match 
the desired accuracythe desired accuracy

Compute solution in SP and then a correction to the 
solution in DP

• Potential for GPU  FPGA  special purpose processorsPotential for GPU, FPGA, special purpose processors
What about 16 bit floating point?

• Use as little you can get away with and improve the accuracy

• Applies to sparse direct and iterative linear systems • Applies to sparse direct and iterative linear systems 
and Eigenvalue, optimization problems, where 
Newton’s method is used.

50 Correction = - A\(b – Ax)



Conclusions Conclusions 
• For the last decade or more, the research 

investment strategy has been investment strategy has been 
overwhelmingly biased in favor of hardware. 

• This strategy needs to be rebalanced -gy
barriers to progress are increasingly on the 
software side.  

• Moreover, the return on investment is more 
favorable to software.

Hardware has a half-life measured in years, while 
software has a half-life measured in decades.

• High Performance Ecosystem out of balanceg y
Hardware, OS, Compilers, Software, Algorithms, Applications

• No Moore’s Law for software, algorithms and applications
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