NETWORK SCIENCE CHALLENGES IN HUMAN NEUROSCIENCE

SIAM NS15 MAY 16, 2015

Danielle S. Bassett

University of Pennsylvania Department of Bioengineering

Complex Biological Systems

Utilize networks of mechanical, electrical, or informational signals to perform complex functions

The Human Brain

Utilizes networks of mechanical, electrical, or informational signals to perform complex functions

Networks at Each Scale

Small Scales Larger Scales

Network neuroscience provides a systems approach to the study of the brain, and enables the examination of interactions between scales.

A Network of Anatomy (Type I)

Structural Pathways: Neuronal Fiber Bundles

- · Anatomically distinct brain areas are represented as network nodes
- Fiber bundles that link these areas are represented as network edges

Hermundstad et al. 2013 PNAS

Efficient Brains are Smarter Brains

The global efficiency of a network can be defined as:

$$E = \frac{1}{n} \sum_{i \in N} E_i = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} d_{ij}^{-1}}{n-1},$$

where E_i is the efficiency of node i, and d_{ij} is the shortest path between node i and node j.

People with higher global efficiency have higher IQs.

A Network of Utilization (Type II)

Functional Pathways: Coherent Time Series

- Anatomically distinct brain areas are represented as network nodes
- Coherence between area activity is represented as a network edge
- Complements efforts in brain mapping to understand how distributed networks function to enable cognition

Hermundstad et al. 2013 PNAS

How do we measure brain activity? What are the time series?

functional magnetic resonance imaging (fMRI)

Non-invasive imaging techniques provide a window into brain function in awake, behaving humans.

Traditional View of Brain Function

What "Lights Up" and When?

Cortical Activity During Hand Movement

Left Hemisphere

Right Hemisphere

Different patters of brain areas show heightened blood-oxygen-leveldependent signals during different tasks.

Network Science Provides a Paradigm Shift

Functional network analysis complements efforts in brain mapping to understand how distributed networks function to enable cognition

Hermundstad et al. 2013 PNAS

Community Structure

In a single time window, the network of interactions between brain regions displays community structure.

Open Question: How does community structure relate to cognitive function?

Communities Map to Cognitive Functions

Community structure provides insight on how the brain functions.

But is this the optimal way to be studying cognitive processes?

Chen et al. Cereb Cortex 2008

A Network of Dynamics (Type III)

How do brain communication patterns change over time?

Bassett et al. PNAS 2011

Motor Skill Learning (a.k.a. Guitar Hero)

Bassett et al. 2011 PNAS

Nicholas Wymbs

Scott Grafton

Experimental Paradigm:

Sequential Movement Task Over 3 Days

Response Button Box

Pseudo-Musical Staff

Estimate Learning:

Exponential drop-off parameter of movement time versus trial bin

What is happening in the brain during learning?

What is happening in the brain during learning?

Dynamic Modules

Optimize using a

greedy algorithm Blondel et al. 2008

Louvain-like locally

We use multilayer modularity to estimate dynamic community structure.

Mason A. Porter Peter Mucha

For i and i Adjacency in same Matrix community $Q = \frac{1}{2\mu} \sum_{ijlr} \left\{ (A_{ijl} - \gamma_l P_{ijl}) \, \delta_{lr} + \delta_{ij} \omega_{jlr} \right\} \, \delta(g_{il}, g_{jr}) \,,$

Mucha et al. 2010 Science

Null Model Adiacency Matrix

Resolution

Parameter For Module Size

> Resolution Parameter for Module Dynamics:

Community Lin time slice r

Community

i in time

slice I

Bassett et al. 2013 Chaos

Flexibility of Dynamic Community Structure

Alluvial Flow Diagram from Rosvall & Bergstrom PNAS 2008

Flexibility of node i is the fraction of times that node i changes community allegiance Bassett et al. PNAS 2011 Doron et al. PNAS 2012 Bassett et al. Chaos 2013

Flexibility Predicts Learning

Global Results | Regional Results

People with higher flexibility on one day will learn better on the following day than people with lower flexibility.

Regional flexibility is critical in association cortex rather than primary sensorimotor cortex.

Personal, Cultural, & Clinical Implications

Who do we train? And when?

Can we optimize flexibility?

Can we tune flexibility?

What environments engender flexibility?

Brain State

Open Challenges

Multilayer Networks

Many Imaging Modalities (Edge Types)

Many People (Network Layers)

Many Time Windows (Network Layers)

- How does function depend on structure?
- What is conserved or variable across people?
- Cognition and Disease

Node and Edge Hierarchies

Node Hierarchies (Multi-Resolution Measurements)

Temporal Scales of Dynamics (Edge Types have Nontrivial Dependencies)

Nodes at the top level are composed of nodes at the bottom level. Edges at the top level are driven by edges at the bottom level.

Network Control

Control Point

Gu et al. arxiv 1406.5197

Clinical Control Applications for Network Control

Deep Brain Stimulation

Treatment of Parkinson's

Transcranial Magnetic Stimulation

Treatment of Depression

NeuroPace

Treatment of Epilepsy

Work from Sri Sarma (John Hopkins), ShiNung Ching (WUSTL), Mark Kramer (Boston University), etc.

Modeling & Statistical Inference

Distinguishing dynamics from noise

Predicting future dynamics

Building spatially informed null models

Application: Confidence and uncertainty

Application: disease progression, degeneration, decision-making

Application: Understanding physical constraints on evolution and function

Modeling & Statistical Inference

Comparing network ensembles

Comparing network dynamics

Application: Alterations in psychiatric disease and neurological disorders

Application: Different cognitive strategies in autism, ADHD, and other conditions

Extracting Temporal Networks from Time Series Data

Application: Extracting network states; distinguishing differences in network state dynamics across people

Prediction, Perturbation, Intervention

Personalized Training
Personalized Rehabilitation and Therapies
Brain-machine Interfaces

Acknowledgments @

Chad Giusti

Lucy Chai

Muzhi Yang

David Baker

Urs Braun

Marcelo Mattar

Ankit Khambhati

Collaborators: Our group & Affiliated Members:

Sarah Muldoon Nick Wymbs (John Hopkins) & Scott T Grafton

Shi Gu

Oawi Telesford

John Medaglia

Funding:

John D. and Catherine T. MacArthur Foundation.

Alfred P. Sloan Foundation

Office of Naval Research

(UC Santa Barbara)

Peter Mucha (University North Carolina) &

Mason Porter (Oxford)

Brian Litt, Sharon Thompson-Schill, Roy Hamilton,

Geoff Aguirre (PENN)

Army Research Laboratory, Army Research Office

National Science Foundation

National Institutes of Health

Open postdoc position!
(dsb@seas.upenn.edu)

Acknowledgments 6

Our group & Affiliated Members:

Collaborators:

Sarah Muldoon

Nick Wymbs (John Hopkins) & Scott T Grafton

(UC Santa Barbara)

Shi Gu

Peter Mucha (University North Carolina) &

Mason Porter (Oxford)

Qawi Telesford

Brian Litt, Sharon Thompson-Schill, Roy Hamilton,

Geoff Aguirre (PENN)

John Medaglia

Funding:

Lucy Chai

Chad Giusti

John D. and Catherine T. MacArthur Foundation.

David Baker

Muzhi Yang

Alfred P. Sloan Foundation

Marcelo Mattar

Army Research Laboratory, Army Research Office

Ankit Khambhati

Office of Naval Research

Urs Braun

National Science Foundation

National Institutes of Health

