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Properties of biological aggregations

• Large-scale coordinated movement
• No centralized control
• Interaction length scale (sight, smell, etc.) << group size
• Sharp boundaries and “constant” population density
• Observed in insects, fish, birds, mammals…
• Also important for cooperative control robotics.

Caltech MVWT UCLA 
applied math 
lab



Propagation of constant 
density groups in 2D

• Conserved population
• Velocity depends nonlocally, linearly on density

Topaz and Bertozzi (SIAM J. Appl. Math., 2004)Assumptions:

incompressibility Potential flow



Incompressible flow dynamics

• Conserved population
• Velocity depends nonlocally, linearly on density

Topaz and Bertozzi (SIAM J. Appl. Math., 2004)

Assumptions:

Incompressibility leads to rotation in 2D



Mathematical model

• Sense averaged nearby pop.
• Climb gradients
• K spatially decaying, isotropic
• Weight 1, length scale 1

Social attraction:
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Topaz, Bertozzi, and Lewis
Bull. Math. Bio. 2006



Mathematical model

• Sense averaged nearby pop.
• Climb gradients
• K spatially decaying, isotropic
• Weight 1, length scale 1
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• Descend pop. gradients
• Short length scale (local)
• Strength ~ density
• Characteristic speed r

Social attraction: Dispersal (overcrowding):
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Coarsening dynamics

Example

box length L = 8π   •   velocity ratio r = 1   •   mass M = 10



Energy selection

Steady-state
density profiles

Energy

X

Example

box length L = 2π   •   velocity ratio r = 1   •   mass M = 2.51

max(ρ)



How to understand? Minimize energy

over all possible rectangular density profiles.

Large aggregation limit

• Energetically preferred swarm has density 1.5r
• Preferred size is L/(1.5r)
• Independent of particular choice of K
• Generalizes to 2d – currently working on coarsening and 

boundary motion

Results:



Large aggregation limit

Peak density Density profiles
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velocity ratio r = 1



Finite time singularities-

pointy potentials 

• Previous Results
• For smooth K the solution blows 

up in infinite time
• For n=1, and `pointy’ K 

(biological kernel: K=e-|x| ) 
blows up in finite time due to 
delta in Kxx 
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Bertozzi and Laurent
Comm. Math. Phys. 2007

2007 result:
For `pointy’ kernel one 
can have smooth initial 
data that blows up in 
finite time in any 
space dimension.  

Proof: uses Lyapunov 
function and some 
potential theory 
estimates.

Bertozzi and Brandman extension
to L-infty initial data to appear in
Comm. Math. Sci. 2009

ρt +∇ · (ρ∇K ∗ ρ) = 0



Finite time singularities-

general potentials 
• Previous Results
• For smooth K the solution blows 

up in infinite time
• For `pointy’ K (biological kernel 

such as K=e-|x| ) blows up in 
finite time for special radial data 
in any space dimension.
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Bertozzi Carrillo, Laurent
Nonlinearity `featured article’ 2009

New result:
Osgood condition 

is a necessary and 
sufficient condition for 
finite time blowup in 
any space dimension
(under mild monotonicity conditions).

Moreover-finite time blowup for
pointy potential can not be 
described by `first kind’ similarity 
solution in dimensions N=3,5,7,...

ρt +∇ · (ρ∇K ∗ ρ) = 0

∫ L

0

1
K ′(r)

dr <∞



• Similarity solution of form 

• The equation implies
• Conservation of mass would imply                           - NO
• Second kind similarity solution - no mass conservation
• Experimentally, the exponents vary smoothly with dimension of 

space, and there is no mass concentration in the blowup....  

Shape of singularity-

pointy potential

Huang and Bertozzi
preprint 2009-radially symmetric numerics

``Finite time blowup for `pointy’ potential, K=|x|, can not be 
described by `first kind’ similarity solution in dimensions 
N=3,5,7,...’’  - Bertozzi, Carrillo, Laurent

ρ(x, t) =
1

(T − t)α
w(

x

(T − t)β
)

α = (n− 1)β + 1
α = nβ



Simulations by Y. Huang

Second 
kind

Exact 
self-similar



• CONNECTION TO BURGERS SHOCKS
• In one dimension, K(x) = |x|, even initial data, the problem can be transformed exactly to 

Burgers equation for the integral of u.

• Burgers equation for odd initial data has an exact similarity solution for the blowup - it is an 
initial shock formation, with a 1/3 power singularity at x=0. 

•  
• There is no jump discontinuity at the initial shock time, which correponds to a zero-mass blowup 

for the aggregation problem. However immediately after the initial shock formation a jump 
discontinuity opens up - corresponds to mass concentration in the aggregation problem 
instantaneously after the initial blowup.

• This Burgers solution is (a) self-similar, (b) of `second kind’, and (c) generic for odd initial data. 
There is a one parameter family of such solutions (also true in higher D).

• For the original u equation, this corresponds to beta = 3/2.

Shape of singularity-

pointy potential

Huang and Bertozzi
preprint 2009

ψ =
∫ x
0 u(x′)dx′, φ = C − 2ψ, φt + φφx = 0.

φ(x, t)



• Local existence of solutions in Lp provided that

•  where q is the Holder conjugate of p (characteristics).
• Existence proof constructs solutions using 

characteristics, in a similar fashion to weak             
solutions (B. and Brandman Comm. Math. Sci. - special 
issue).

• Global existence of the same solutions in Lp provided that 
K satisfies the Osgood condition (derivation of a priori 
bound for Lp norm - similar to refined potential theory 
estimates in BCL 2009).

• When Osgood condition is violated, solutions blow up in 
finite time - implies blowup in Lp for all p>pc.

∇K ∈ W 1,q(RN )

 Lp well-posedness 

for general potential

Bertozzi, Laurent, and Rosado
manuscript in preparation 2009

L∞



• Ill-posedness of the problem in Lp for p less than the Holder-critical pc 
associated with the potential K.

• Ill-posedness results because one can construct examples in which 
mass concentrates instantaneously (for all t>0).

•  For p> pc , uniqueness in Lp can be proved for initial data also having 
bounded second moment, the proof uses ideas from optimal transport.

• The problem is globally well-posed with measure-valued data 
(preprint of Carrillo, DiFrancesco, Figalli, Laurent, and Slepcev - 
using optimal transport ideas).

• Even so, for non-Osgood potentials K, there is loss of information as 
time increases.  

• Analogous to information loss in the case of compressive shocks for 
scalar conservation laws.

 Lp well-posedness 

for general potential

Bertozzi, Laurent, and Rosado
manuscript in preparation 2009



mi
∂vi

∂t
= (α− β|vi|2)vi −∇i

∑

j

V (|xi − xj |))

V (|xi − xj |) = −Cae|xi−xj |/la + Cre
|xi−xj |/lr

β|v|2 = α

Discrete Swarms: A simple model for the mill vortex

Morse potential

Rayleigh friction 

Discrete: 

Adapted from Levine, Van Rappel Phys. Rev. E 2000

•without self-propulsion and drag this is Hamiltonian 
•Many-body dynamics given by statistical mechanics
•Proper thermodynamics in the H-stable range
•Additional Brownian motion plays the role of a temperature

•What about the non-conservative case?
•Self-propulsion and drag can play the role of a temperature
•non-H-stable case leads to interesting swarming dynamics

M. D’Orsogna, Y.-L. Chuang, A. L. Bertozzi, and L. Chayes,
Physical Review Letters 2006



H-Stability for thermodynamic systems

D.Ruelle, Statistical Mechanics, Rigorous results
A. Procacci, Cluster expansion methods in rigorous S.M.

NO PARTICLE COLLAPSE IN ONE POINT

(H-stability)

NO INTERACTIONS AT TOO LARGE DISTANCES 

(Tempered potential  :   decay faster than r−3+ε)

         
 Thermodynamic Stability for N particle system       

 Mathematically treat the limit           

exists

So that free energy per particle:

 H-instability ‘catastrophic’ collapse regime 



Morse Potential 2D

Catastrophic:  
particle collapse as

Stable:  
particles occupy 

macroscopic volume as



• FEATURES OF SWARMING IN NATURE:  Large-scale coordinated movement, 
• No centralized control
• Interaction length scale (sight, smell, etc.) << group size
• Sharp boundaries and “constant” population density, Observed in insects, fish, birds, mammals…

Interacting particle models for swarm dynamics

H-unstable potential H-stable potential

D’Orsogna et al PRL 2006, Chuang et al Physica D 2007

Edelstein-Keshet and Parrish, Science



Catastrophic vs H Stable
Discrete: 

H Stable Catastrophic



Catastrophic vs H Stable
Discrete: 

H Stable Catastrophic



Catastrophic vs H Stable
Discrete: 

H Stable Catastrophic



Double spiral
Discrete: 

Run3
H-unstable



H-stable dynamics

Well defined spacings

Large alpha      fly apart   (infinite b.c)

Constant angular velocity? 



Ring and Clump formation



Ring formation



∂ρ

∂t
+∇ · (ρ#u) = 0

∂#u

∂t
+ #u ·∇#u = α#u− β|#u|2#u− 1

m2
∇

∫
V (#x− #y)ρ(#y, t)d#y

    Continuum limit of particle swarms
YL Chuang, M. R. D’Orsogna, A. L. Bertozzi, and L. Chayes, Physica D 2007

set rotational  velocities 

Steady state: Density implicitly defined

ρ(r)

r

Constant speed

Constant speed, not a constant angular velocity

H-unstable

Dynamic continuum model may be valid for catastrophic case but not H-stable.



Comparison continuum vs discrete for 
catastrophic potentials

•  

29



Why H-unstable for continuum 
limit?

• H-unstable - for large swarms, the 
characteristic distance between neighboring 
particles is much smaller than the 
interaction length of the potential so that

•                                                               .

• In H-stable regime the two lengthscales are 
comparable (by definition).

30

∇
∫

V (!x− !y)ρ(!y, t)d!y ∼ ∇
∑

i

V (x− yi)



Demonstration of cooperative 
steering - Leung et al ACC 2007.

Algorithm by 
D. Morgan and 
I. Schwartz, 
NRL, related 
to discrete 
swarming 
model.

Processed IR sensor output for 
obstacle avoidance shown along 
path.

Obstacle is camouflaged from overhead vision 
tracking system – cars use crude onboard sensors to 
detect location and avoid obstacle while maintaining 
some group cohesion.  Their goal to to end up at 
target location on far side of obstacle.

box is 
blind to 
overhead 
tracking 
cameras



Biomimetic Boundary Tracking
Joshi et al ACC 2009.

• boundary tracking like ants 
following pheremone 
trails.

• uses sensor data.
• geometric motion returns 

vehicle to the path.
• cooperative steering 

(convoy).
• statistical signal filtering is 

important.
• idea also applied to edge 

detection in hyperspectral 
imagery and AFM. 32
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