
Numerical Analysis of
Hierarchical Gaussian Process Regression

Aretha Teckentrup

School of Mathematics, University of Edinburgh
Alan Turing Institute, London

Joint work with:

Andrew Stuart (Caltech)

SIAM UQ ’18 - April 17, 2018

A. Teckentrup (Edinburgh) Hierarchical GP regression April 17, 2018 1 / 13



Outline

1 Gaussian Process Regression

2 Convergence bounds

3 Application in Bayesian inverse problems

A. Teckentrup (Edinburgh) Hierarchical GP regression April 17, 2018 2 / 13



Gaussian Process Regression
Main idea

Gaussian process emulators (also known as kriging) can be viewed as
a Bayesian version of interpolation.

We are given f at design points DN = {un}Nn=1, obtaining function
values {f(un)}Nn=1.

We interpolate f by a random function fN , where fN is conditioned
such that fN (un) ≡ f(un), for n = 1, . . . , N .

Choosing the distribution of fN as a Gaussian process, we obtain a
Gaussian process emulator.

The distribution of fN is chosen to reflect the smoothness and typical
length scales of f .

A. Teckentrup (Edinburgh) Hierarchical GP regression April 17, 2018 3 / 13



Gaussian Process Regression
Main idea

Gaussian process emulators (also known as kriging) can be viewed as
a Bayesian version of interpolation.

We are given f at design points DN = {un}Nn=1, obtaining function
values {f(un)}Nn=1.

We interpolate f by a random function fN , where fN is conditioned
such that fN (un) ≡ f(un), for n = 1, . . . , N .

Choosing the distribution of fN as a Gaussian process, we obtain a
Gaussian process emulator.

The distribution of fN is chosen to reflect the smoothness and typical
length scales of f .

A. Teckentrup (Edinburgh) Hierarchical GP regression April 17, 2018 3 / 13



Gaussian Process Regression
Simple Derivation [Rasmussen, Williams ’06]

We assign a prior probability distribution to f : a Gaussian process on
U ⊆ Rdu , with mean m : U → R and covariance kernel
k : U × U → R:

f ∼ GP(m(u), k(u, u′))

For every u ∈ U , f(u) is a Gaussian random variable with E(f(u)) = m(u)

and Cov(f(u), f(u′)) = k(u, u′).

Conditioning the prior on the given function values {f(un)}Nn=1 leads

to the posterior distribution fN ∼ GP(mf
N (u), kN (u, u′)), with

mf
N (u) = m(u) + k∗(u)TK−1

∗ (f∗ −m∗),
kN (u, u′) = k(u, u′)− k∗(u)TK−1

∗ k∗(u
′),

and (k∗(u))n = k(u, un), (K∗)nm = k(un, um), (f∗)n = f(un) and
(m∗)n = m(un).
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Gaussian Process Regression
Approximation properties

We have mf
N (un) = f(un) and kN (un, un) = 0, for n = 1, . . . , N .

⇒ fN (un) ≡ mf
N (un) = f(un) , for n = 1, . . . , N .

The predictive mean mf
N is an interpolant of f , and the emulator fN

is a random interpolant of f , reflecting the uncertainty in f away
from the design points DN .

Under certain regularity assumptions on the design points DN and
the functions f and fN , we have

‖f −mf
N‖L2(U) → 0, and ‖k

1
2
N‖L2(U) → 0,

as N →∞.
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Gaussian Process Regression
Choice of mean and covariance kernel

The mean function m is typically chosen as a polynomial:
m(u) =

∑Q
q=1 βq pq(u).

Covariance kernels frequently used are

I the family of Matèrn covariances

kMat(u, u
′) =

σ2

Γ(ν)2ν−1

(
‖u− u′‖

λ

)ν
Bν

(
‖u− u′‖

λ

)
,

with smoothness parameter ν > 0, marginal variance σ2 > 0 and
correlation length λ > 0.

ν = 1/2 : σ2 exp
(
− ‖u−u

′‖
λ

)
, ν =∞ : exp

(
− ‖u−u

′‖2
λ2

)
.

I the family of separable Matèrn covariances

ksepMat(u, u
′) =

du∏
i=1

kMat(ui, u
′
i).

The hyper-parameters θ are unknown a-priori.
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kMat(u, u
′) =

σ2

Γ(ν)2ν−1

(
‖u− u′‖

λ

)ν
Bν

(
‖u− u′‖

λ

)
,

with smoothness parameter ν > 0, marginal variance σ2 > 0 and
correlation length λ > 0.

ν = 1/2 : σ2 exp
(
− ‖u−u

′‖
λ

)
, ν =∞ : exp

(
− ‖u−u

′‖2
λ2

)
.

I the family of separable Matèrn covariances
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Gaussian Process Regression
Empirical Bayes’

We use an empirical Bayes’ (or plug-in) approach, where we estimate
values of the hyper-parameters from {f(un)}Nn=1 and plug these into
the posterior distribution fN .

This gives a sequence of estimates θ̂N , which can be found via
maximum likelihood estimation, maximum a-posteriori estimation,
cross validation, . . .

We assume that there is a true parameter value θ0, defined in a
suitable way.
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Convergence bounds
Matèrn kernels: convergence as N → ∞
With design points DN = {un}Nn=1, define:

fill distance hDN = max
u∈U

min
un∈DN

‖u− un‖, hDN ∼ N
−1/du ,

mesh ratio ρDN =
maxu∈U minun∈DN ‖u− un‖

1
2 minn 6=l ‖un − ul‖

, ρDN ≥ 1.

Theorem [Stuart, ALT in prep.]

Under certain regularity conditions, with covariance kernel kMat, we have

‖f −mf
N (θ̂N )‖L2(U) ≤

C(θ̂N )h
min{τ̃ ,ν̂N+K

2
}

DN
ρ

max{ν̂N+K
2
−τ̃ ,0}

DN

(
‖f‖H τ̃ (U) + ‖m(θ̂N )‖H τ̃ (U)

)
,

with C independent of f . Furthermore,

‖k
1
2
N‖L2(U) ≤ C(θ̂N )h

min{τ̃−K
2
,ν̂N}

DN
ρ

max{ν̂N+K
2
−τ̃ ,0}

DN
.
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Convergence bounds
Separable Matèrn kernels: convergence as N → ∞

Theorem [Stuart, ALT in prep.]

Under certain regularity conditions, with covariance kernel ksepMat and

tensor product domain U =
∏K
k=1 Uk,

DN chosen as a Smolyak sparse grid,

we have

‖f −mf
N (θ̂N )‖L2(U) ≤

C(θ̂N )N−α(ν̂N )| logN |α̃(ν̂N ,K)
(
‖f‖

H
{r̃k}
⊗K

(U)
+ ‖m(θ̂N )‖

H
{r̃k}
⊗K

(U)

)
,

with C independent of f . Furthermore,

‖k
1
2
N‖L2(U) ≤ C(θ̂N )N−α(ν̂N )+ 1

2 | logN |α̃(ν̂N ,K).
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Convergence bounds
Convergence as θ̂N → θ0

Theorem [Stuart, ALT in prep.]

Under certain regularity conditions, with covariance kernel kMat or ksepMat,
we have for fixed N ∈ N and θ → θ0

‖mf
N (θ)−mf

N (θ0)‖
Hκ(U) / H

{κk}
⊗K

(U)
→ 0,

‖k1/2
N (θ)− k1/2

N (θ0)‖L2(U) → 0,

for all κ / {κk} sufficiently small.
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Application in Bayesian inverse problems
Bayesian posterior distribution

We are interested in µy(u) being the posterior distribution in a
Bayesian inverse problem (parameter identification problem):

dµy

dµ0
(u) ∝ e−‖y−F (u)‖2

Γ−1 ,
(
πy(u) ∝ e−‖y−F (u)‖2

Γ−1 π0(u)
)
.

This arises from

I incorporating knowledge on u in a prior distribution µ0 (with density
π0),

I observing data y = F (u) + η, with noise η ∼ N(0,Γ),

I conditioning µ0 on y, resulting in the posterior distribution µy (with
density πy).
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Application in Bayesian inverse problems
Approximation with Gaussian process emulators

The map F is often very expensive to simulate, e.g. involving the
solution to a differential equation.

Approximating the data log-likelihood Φ(u) = ‖y − F (u)‖2Γ−1 (or
directly F (u)) with a Gaussian process emulator results in an
approximate posterior distribution µyN .

The error between µy and µyN (measured in the Hellinger distance)

can be bounded in terms of ‖Φ−mΦ
N‖L2

µ0
(U) and ‖k1/2

N ‖L2
µ0

(U).

For more details, see [Stuart, ALT ’18].
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