

Multilevel Optimization for Multi-Modal X-ray Data Analysis

Zichao (Wendy) Di

Mathematics & Computer Science Division Argonne National Laboratory

May 25, 2016

Multi-Modality Imaging Example: X-ray Tomography Forward Model Optimization Algorithms Numerical Results

Multilevel-Based Acceleration Introduction of MG/OPT Application of Multilevel in Tomographic Reconstruction Numerical Results

Multi-Modality Imaging Example: X-ray Tomography Forward Model Optimization Algorithms Numerical Results

Multilevel-Based Acceleration Introduction of MG/OPT Application of Multilevel in Tomographic Reconstruction Numerical Results

More is Better

CT:hard-tissue; T2(MRI):soft tissue; PET: functional characteristics.

¹Boss, A. and et al. (2010). Hybrid PET/MRI of Intracranial Masses: Initial Experiences and Comparison to PET/CT, JNM

Multi-Modality Imaging Example: X-ray Tomography Forward Model Optimization Algorithms Numerical Results

Multilevel-Based Acceleration

Tomographic Image Reconstruction

- Non-invasive imaging technique to visualize internal structures of object.
- Tomography applications: physics, chemistry, astronomy, geophysics, medicine, etc.
- Tomographic imaging modalities: X-ray transmission, ultrasound, magnetic resonance, X-ray fluorescence, etc.
- Task: estimate distribution of physical quantities in sample from measurements.
- Limited angle tomography reconstruction is naturally ill-conditioned.

Schematic Experimental Setup with Two Modalities

Reconstruction Approaches

- Traditional: filtered backprojection
 - Restricted to simple tomographic model
 - Requires a large number of projections
- Alternatively, iterative reconstruction from single data modality
 - Requires much less data acquisition, results in higher accuracy

Our Goal:

Formulate a joint inversion integrating XRF and XRT data to improve the reconstruciton quality of elemental map.

Multi-Modality Imaging Example: X-ray Tomography Forward Model Optimization Algorithms Numerical Results

Multilevel-Based Acceleration

X-ray Transmission (XRT)

 Traditionally, the XRT projection of the object from beam line (θ, τ) is modeled as

$$\mathbf{F}_{\theta,\tau}^{T}(\tilde{\boldsymbol{\mu}}^{\boldsymbol{\mathcal{E}}}) = \mathbf{I}_{0} \exp\left\{-\sum_{v} L_{v} \tilde{\mu}_{v}^{\boldsymbol{\mathcal{E}}}\right\}$$

to directly solve the linear attenuation coefficient $\tilde{\mu}_{v}^{E}$ for each voxel *v*,

► In our approach, notice $\tilde{\mu}_{v}^{E} = \sum_{e} \mathcal{W}_{v,e} \mu_{e}^{E}$,

$$\mathbf{F}_{\theta,\tau}^{T}(\boldsymbol{\mathcal{W}}) = I_{0} \exp\left\{-\sum_{\boldsymbol{v},\boldsymbol{e}} L_{\boldsymbol{v}} \mu_{\boldsymbol{e}}^{\boldsymbol{\mathcal{E}}} \boldsymbol{\mathcal{W}}_{\boldsymbol{v},\boldsymbol{e}}\right\}$$

Io: incident photon flux

 μ_e^E : mass attenuation coefficient of element $e \in \mathcal{E}$ at beam incident energy E

 $W = W_{v,e}$: tensor denoting how much of element *e* is in voxel *v*

 $L = [L_v]$: tensor of intersection length of beam line (θ, τ) with the voxel v

X-ray Fluorescence (XRF)

Mathematical Model of XRF

 First, we obtain the unit fluorescence spectrum

$$\mathbf{M}_{e} = F^{-1} \left(F(I_{e}) * F\left(\frac{1}{\sigma\sqrt{2\pi}} \exp\left\{\frac{-\mathbf{x}^{2}}{2\sigma^{2}}\right\} \right) \right)$$

▶ Then, the XRF spectrum, $\mathbf{F}_{\theta,\tau}^R$

$$= \sum_{\mathbf{v}, \mathbf{e}, \mathbf{d}} \frac{L_{\mathbf{v}} \mathcal{W}_{\mathbf{v}, \mathbf{e}} \mathbf{M}_{\mathbf{e}}}{n_{\mathbf{d}}} \exp\left\{-\sum_{\mathbf{v}', \mathbf{e}'} \mathcal{W}_{\mathbf{v}', \mathbf{e}'} \left(\mu_{\mathbf{e}'}^{\mathsf{E}} L_{\mathbf{v}'} \mathbb{I}_{\mathbf{v}' \in \mathcal{U}^{\mathsf{v}}} + \mu_{\mathbf{e}'}^{\mathsf{E}_{\mathbf{e}}} P_{\mathbf{v}, \mathbf{v}', \mathbf{d}}\right)\right\}$$

Transmission Detector

pixely

Beam Direction

 U^{ν}

P

Profe

 $\mathbf{P} = [P_{v,v',d}]$: tensor of intersection length of fluorescence detectorlet path *d* with the voxel v'

Fluorescence

d=2

d = 3

Multi-Modality Imaging

Example: X-ray Tomography Forward Model Optimization Algorithms Numerical Results

Multilevel-Based Acceleration

Resulting Optimization: Joint Reconstruction (JRT)

Goal:

Find
$$\mathcal{W}$$
 so that $\mathbf{F}_{\theta,\tau}^{R}(\mathcal{W}) = \mathbf{D}_{\theta,\tau}^{R}$ and $\mathbf{F}_{\theta,\tau}^{T}(\mathcal{W}) = D_{\theta,\tau}^{T}$

$$\min_{\boldsymbol{\mathcal{W}} \ge 0} \phi(\boldsymbol{\mathcal{W}}) = \sum_{\theta, \tau} \left(\frac{1}{2} \left\| \mathbf{F}_{\theta, \tau}^{R}(\boldsymbol{\mathcal{W}}) - \mathbf{D}_{\theta, \tau}^{R} \right\|^{2} + \frac{\beta}{2} \left\| \mathbf{F}_{\theta, \tau}^{T}(\boldsymbol{\mathcal{W}}) - D_{\theta, \tau}^{T} \right\|^{2} \right)$$

where

- ▶ $\mathbf{D}_{\theta,\tau}^{R} \in \mathbb{R}^{n_{E}}$: measurement data of XRF signal detected at angle θ from light beam τ
- $D_{\theta,\tau}^T \in \mathbb{R}$: the measurement data of XRT signal detected at angle θ from light beam τ
- $\beta > 0$: a scaling parameter to balance the two modalities

Note: Optimization differs on how $\mathbf{F}_{\theta,\tau}^{R}$ and $\mathbf{F}_{\theta,\tau}^{T}$ are combined

How Multimodality Can Help

Consider an **overdetermined** (more equations than the number of unknowns) but **rank deficient** system which has an **infinitude of solutions**:

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 0.5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0.5 \end{bmatrix}$$

Another such rank-deficient (not full-rank) system:

$$\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 3 \end{bmatrix}$$

However, combine these two can form a full rank and consistent system with a unique solution ${\bm x}$

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 0.5 & 1 \\ 2 & 3 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0.5 \\ 1.5 \\ 3 \end{bmatrix}$$

Optimization Solver

In experiments, we use truncated-Newton (TN) method with preconditioned conjugate gradient (PCG) to provide a search direction:

- To satisfy the bound constraints, the projected PCG is applied to the reduced Newton system
- ► One TN iteration typically requires κ(O(10)) PCG iterations

Main expense of each outer iteration is κ + 2 function-gradient evaluations.

Multi-Modality Imaging

Example: X-ray Tomography Forward Model Optimization Algorithms Numerical Results

Multilevel-Based Acceleration

JRT versus Single XRF Reconstruction (Synthetic)¹ Element Unit: $g/\mu m^2$

¹Di, Leyffer, and Wild (2016). An Optimization-Based Approach for Tomographic Inversion from Multiple Data Modalities, SIAMIS

Convergence

Addressing Self-Absorption Effect

Multi-Modality Imaging Example: X-ray Tomography Forward Model Optimization Algorithms Numerical Results

Multilevel-Based Acceleration Introduction of MG/OPT Application of Multilevel in Tomographic Reconstruction Numerical Results

Motivation

Multi-Modality Imaging

Multilevel-Based Acceleration Introduction of MG/OPT

Application of Multilevel in Tomographic Reconstruction Numerical Results

Introduction of MG/OPT

- Multigrid optimization algorithm (MG/OPT) is a general framework to accelerate a traditional optimization algorithm¹.
- Recursively use coarse problems to generate search directions for fine problems.
- MG/OPT can deal with more general problems in an optimization perspective, in particular, it is able to handle inequality constraints in a natural way.
- Multiple options to design the hierarchy of the problem:
 - through image space.
 - through data space.

¹Nash, S. G. (2000). A Multigrid Approach to Discretized Optimization Problems, OMS

MG/OPT

Given:

- ► High-resolution model $f_h(z_h)$, easier-to-solve low-resolution model $f_H(z_H)$
- ► $\mathbf{z}^+ \leftarrow \mathsf{OPT}(f(\mathbf{z}), \bar{\mathbf{z}}, k)$
- A restriction operator I_h^H and an interpolation operator I_H^h
- An initial estimate z⁰_h of the solution z^{*}_h on the fine level
- Integers k_1 and k_2 satisfying $k_1 + k_2 > 0$

25/35

Multi-Modality Imaging

Multilevel-Based Acceleration Introduction of MG/OPT Application of Multilevel in Tomographic Reconstruction Numerical Results

Interpolation/Restriction Operators

▶ Restriction on 2D parameter $W_h \in \mathbb{R}^2$ to produce \overline{W}_H using full weighted matrix:

- Restriction on gradient *Î*^H_h = C *I*^H_h where C balances the order difference between φ_h(*W*_h) and φ_H(*I*^H_h*W*_h)
- Interpolation operator: $I_H^h = 4(I_h^H)^T$.

Coarse Grid Surrogate Model

Shift experimental data for coarse level:

$$\mathbf{\tilde{D}}_{\theta,\tau} = \mathbf{D}_{\theta,\tau} - (\mathbf{F}_{\theta,\tau}^{,h}(\mathbf{\bar{\mathcal{W}}}_{h}) - \mathbf{F}_{\theta,\tau}^{,H}(\mathbf{I}_{h}^{H}\mathbf{\bar{\mathcal{W}}}_{h}))$$

The surrogate model:

$$\begin{split} \tilde{\phi}_{H}(\boldsymbol{\mathcal{W}}_{H}) &= \sum_{\theta,\tau} \left(\frac{1}{2} \left\| \mathbf{F}_{\theta,\tau}^{,H}(\boldsymbol{\mathcal{W}}_{H}) - \tilde{\mathbf{D}}_{\theta,\tau} \right\|^{2} \right) \\ &- \left(\nabla \phi_{H}(I_{h}^{H} \bar{\boldsymbol{\mathcal{W}}}_{h}) - \hat{I}_{h}^{H} \nabla \phi_{h}(\bar{\boldsymbol{\mathcal{W}}}_{h}) \right)^{T} \boldsymbol{\mathcal{W}}_{H} \end{split}$$

Multi-Modality Imaging

Multilevel-Based Acceleration

Introduction of MG/OPT Application of Multilevel in Tomographic Reconstruction Numerical Results

MG/OPT Search Directions versus Error

2-level MG/OPT Reconstruction

Multi-Modality Imaging Example: X-ray Tomography Forward Model Optimization Algorithms Numerical Results

Multilevel-Based Acceleration Introduction of MG/OPT Application of Multilevel in Tomographic Reconstruction Numerical Results

Summary

- Established a link between X-ray transmission and X-ray fluorescence datasets by reformulating their corresponding physical models.
- Developed a simultaneous optimization approach for the joint inversion, and achieved a dramatic improvement of reconstruction quality with no extra computational cost.
- Proposed a multigrid-based optimization framework to further reduce the computational cost of the reconstruction problem.
- Preliminary results show that coarsening in voxel space improves accuracy/speed.

Making More of More

- Extend our multimodal analysis tool to data from different instruments, involving varying spatial resolution and contrast mechanisms.
- Guided by the hierarchical nature of our multilevel algorithm, we will investigate new data acquisition strategies and allow for flexible and adaptive sampling approaches.
- Enable a true real-time feedback.

Acknowledgement

This work was funded under the project "The Tao of Fusion: Pathways for Big-data Analysis of Energy Materials at Work" and "Base optimization (DOE-ASCR DE-AC02-06CH11357)".