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More is Better

1

CT:hard-tissue; T2(MRI):soft tissue; PET: functional characteristics.
1Boss, A. and et al. (2010). Hybrid PET/MRI of Intracranial Masses: Initial

Experiences and Comparison to PET/CT, JNM
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Tomographic Image Reconstruction

I Non-invasive imaging technique to visualize internal
structures of object.

I Tomography applications: physics, chemistry, astronomy,
geophysics, medicine, etc.

I Tomographic imaging modalities: X-ray transmission,
ultrasound, magnetic resonance, X-ray fluorescence, etc.

I Task: estimate distribution of physical quantities in sample
from measurements.

I Limited angle tomography reconstruction is naturally
ill-conditioned.
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Schematic Experimental Setup with Two Modalities
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Reconstruction Approaches

I Traditional: filtered backprojection
I Restricted to simple tomographic model
I Requires a large number of projections

I Alternatively, iterative reconstruction from single data
modality

I Requires much less data acquisition, results in higher
accuracy

Our Goal:
Formulate a joint inversion integrating XRF and XRT data to
improve the reconstruciton quality of elemental map.
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X-ray Transmission (XRT)

I Traditionally, the XRT projection of the
object from beam line (θ, τ) is modeled as

FT
θ,τ (µ̃E ) = I0 exp

{
−
∑

v

Lv µ̃
E
v

}
.

to directly solve the linear attenuation
coefficient µ̃E

v for each voxel v ,

I In our approach,notice µ̃E
v =

∑
e

Wv ,eµ
E
e ,

FT
θ,τ (WWW) = I0 exp

{
−
∑
v ,e

Lvµ
E
eWv ,e

} I0: incident photon flux

µE
e : mass attenuation coefficient of element

e ∈ E at beam incident energy E

WWW =Wv,e : tensor denoting how much
of element e is in voxel v

L = [Lv ]: tensor of intersection length
of beam line (θ, τ) with the voxel v
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X-ray Fluorescence (XRF)
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Mathematical Model of XRF

I First, we obtain the unit fluorescence
spectrum

Me = F−1
(

F (Ie) ∗ F
(

1
σ
√

2π
exp

{
−x2

2σ2

}))

I Then, the XRF spectrum, FR
θ,τ

=
∑
v ,e,d

LvWv ,eMe

nd
exp

−∑
v ′,e′
Wv ′,e′

(
µE

e′Lv ′Iv ′∈Uv + µEe
e′ Pv ,v ′,d

)
P = [Pv,v′,d ]: tensor of intersection length of fluorescence detectorlet path d with the voxel v′
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Resulting Optimization: Joint Reconstruction (JRT)

Goal:
FindWWW so that FR

θ,τ (WWW) = DR
θ,τ and FT

θ,τ (WWW) = DT
θ,τ

min
WWW≥0

φ(WWW) =
∑
θ,τ

(
1
2

∥∥∥FR
θ,τ (WWW)− DR

θ,τ

∥∥∥2
+
β

2

∥∥∥FT
θ,τ (WWW)− DT

θ,τ

∥∥∥2
)

where

I DR
θ,τ ∈ RnE : measurement data of XRF signal detected at angle

θ from light beam τ

I DT
θ,τ ∈ R: the measurement data of XRT signal detected at angle

θ from light beam τ

I β > 0: a scaling parameter to balance the two modalities

Note: Optimization differs on how FR
θ,τ and FT

θ,τ are combined
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How Multimodality Can Help
Consider an overdetermined (more equations than the
number of unknowns) but rank deficient system which has an
infinitude of solutions: 1 2

2 4
0.5 1

[x1
x2

]
=

 1
2

0.5


Another such rank-deficient (not full-rank) system:[

2 3
4 6

] [
x1
x2

]
=

[
1.5
3

]
However, combine these two can form a full rank and
consistent system with a unique solution x

1 2
2 4

0.5 1
2 3
4 6


[
x1
x2

]
=


1
2

0.5
1.5
3
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Optimization Solver

In experiments, we use truncated-Newton (TN) method with
preconditioned conjugate gradient (PCG) to provide a search
direction:

I To satisfy the bound constraints, the projected PCG is
applied to the reduced Newton system

I One TN iteration typically requires κ(O(10)) PCG
iterations

Main expense of each outer iteration is κ+ 2 function-gradient
evaluations.
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JRT versus Single XRF Reconstruction (Synthetic)1

Element Unit: g/µm2

1Di, Leyffer, and Wild (2016). An Optimization-Based Approach for
Tomographic Inversion from Multiple Data Modalities, SIAMIS 18 / 35



Convergence
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Addressing Self-Absorption Effect

Sample: Solid
glassrod (Silicon)

with 2 wires
(Tungsten, Gold).
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Motivation

N = 92, flops = 2×107

N = 52, flops = 6×106

N = 32, flops = 3×106

N = 22, flops = 8×105

22 / 35



Outline

Multi-Modality Imaging

Multilevel-Based Acceleration
Introduction of MG/OPT
Application of Multilevel in Tomographic Reconstruction
Numerical Results

Summary and Outlook

23 / 35



Introduction of MG/OPT

I Multigrid optimization algorithm (MG/OPT) is a general
framework to accelerate a traditional optimization
algorithm1.

I Recursively use coarse problems to generate search
directions for fine problems.

I MG/OPT can deal with more general problems in an
optimization perspective, in particular, it is able to handle
inequality constraints in a natural way.

I Multiple options to design the hierarchy of the problem:
I through image space.
I through data space.

1Nash, S. G. (2000). A Multigrid Approach to Discretized Optimization
Problems, OMS
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MG/OPT
Given:

I High-resolution model fh(zh), easier-to-solve low-resolution model
fH(zH)

I z+ ← OPT(f (z), z̄, k)

I A restriction operator IH
h and an interpolation operator Ih

H

I An initial estimate z0
h of the solution z∗h on the fine level

I Integers k1 and k2 satisfying k1 + k2 > 0

25 / 35



Outline

Multi-Modality Imaging

Multilevel-Based Acceleration
Introduction of MG/OPT
Application of Multilevel in Tomographic Reconstruction
Numerical Results

Summary and Outlook

26 / 35



Interpolation/Restriction Operators

I Restriction on 2D parameterWWWh ∈ R2 to produce W̄WWH
using full weighted matrix:

I Restriction on gradient ÎH
h = C IH

h where C balances the
order difference between φh(W̄WWh) and φH(IH

h W̄WWh)

I Interpolation operator: Ih
H = 4(IH

h )T .
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Coarse Grid Surrogate Model

I Shift experimental data for coarse level:

D̃̃D̃Dθ,τ = Dθ,τ − (F,hθ,τ (W̄WWh)− F,Hθ,τ (IH
h W̄WWh))

The surrogate model:

φ̃H(WWWH) =
∑
θ,τ

(
1
2

∥∥∥F,Hθ,τ (WWWH)− D̃̃D̃Dθ,τ

∥∥∥2
)

−
(
∇φH(IH

h W̄WWh)− ÎH
h ∇φh(W̄WWh)

)T
WWWH
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MG/OPT Search Directions versus Error

Problem Size: [33 17]
Fine−Level Error
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2-level MG/OPT Reconstruction
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Multigrid
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Summary

I Established a link between X-ray transmission and X-ray
fluorescence datasets by reformulating their corresponding
physical models.

I Developed a simultaneous optimization approach for the
joint inversion, and achieved a dramatic improvement of
reconstruction quality with no extra computational cost.

I Proposed a multigrid-based optimization framework to
further reduce the computational cost of the reconstruction
problem.

I Preliminary results show that coarsening in voxel space
improves accuracy/speed.
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Making More of More

I Extend our multimodal analysis tool to data from different
instruments, involving varying spatial resolution and
contrast mechanisms.

I Guided by the hierarchical nature of our multilevel
algorithm, we will investigate new data acquisition
strategies and allow for flexible and adaptive sampling
approaches.

I Enable a true real-time feedback.
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