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Physiology of inner ear 
Keener and Sneyd Chapter 12 (BernevandvLevy, 1993, Fig.10-6.)




General References and setup


•  Peskin	(P)	Par;al	Differen;al	Equa;ons	in	Biology	(web)	
•  Neu/Keller	(1985)	

•  Keener	and	Sneyd	(KS)	
•  Lesser/Berkley	(1972)	

•  “Physiology	and	mathema;cal	modeling	of	the	auditory	system”	Alla	Borisyuk,	
Springer	Tutorial	in	Mathema;cal	Biosciences	(2005)	

Navier	Stokes	equa;ons,	possibly	viscous,		incompressible,	
constant	density,	ignore	ρ(∇•u)u	(small	velocity)	



p	=	pressure,	ρ	=	density,	u	=	(u1,	u2)	fluid	velocity	
(KS)		
	 	 	 	𝜌​𝜕𝑢/𝜕𝑡 +∇𝑝=0	
∇ ∙𝑢=0	
Poten;al	flow	
𝑢= ∇𝜙	
𝜌​𝜕𝜙/𝜕𝑡 +𝑝=0 	
​∇↑2 𝜙=0	
(P)	
𝜌​𝜕𝑢/𝜕𝑡 + ​𝜕𝑝/𝜕𝑥 =𝜇(​​𝜕↑2 𝑢/𝜕​𝑥↑2  + ​​𝜕↑2 𝑢/𝜕​𝑦↑2  )	
𝜌​𝜕𝑢/𝜕𝑡 + ​𝜕𝑝/𝜕𝑥 =𝜇(​​𝜕↑2 𝑢/𝜕​𝑥↑2  + ​​𝜕↑2 𝑢/𝜕​𝑦↑2  )	
​𝜕𝑢/𝜕𝑥 + ​𝜕𝑣/𝜕𝑦 =0	
So	the	main	difference	thus	far	is	that	(P)	considers	viscosity.	



Basilar membrane physiology




(KS)	from	Lesser	and	Berkley	
Each	point	on	the	basilar	membrane	has	mass	m,	damping	r	and	s;ffness	k.		
These	parameters	vary	along	the	membrane	
		
𝑚(𝑥)​𝜕​𝑛↑2 /𝜕​𝑡↑2  +𝑟(𝑥)​𝜕𝑛/𝜕𝑡 +𝑘(𝑥)𝑛= ​𝑃↓2 (𝑥, 𝑛(𝑥,𝑡), 𝑡)− ​𝑃↓1 (𝑥, 𝑛(𝑥,𝑡), 𝑡)	
		
n	in	(P)	=	h	in	(KS),	 ​𝑃↓2 (𝑥, 𝑛(𝑥,𝑡), 𝑡)=𝑝(𝑥, ​0↑− , 𝑡),	 ​𝑃↓1 (𝑥, 𝑛(𝑥,𝑡), 𝑡)=𝑝(𝑥, ​0↑+ , 𝑡)	
		
(P)	From	Neu	Keller		
Basilar	membrane	can	be	treated	as	massless	but	ac;ve	with	
At	y	=0,		

u(x,	0,	t)	=	0,	v(x,	0,	t)	=	 ​𝜕ℎ/𝜕𝑡 (𝑥, 𝑡)	
𝑝(𝑥, ​0↑− , 𝑡)−𝑝(𝑥, ​0↑+ , 𝑡)= ​𝑠↓0 ​𝑒↑−𝜆𝑥 (ℎ+𝐵​𝜕ℎ/𝜕𝑡 )(𝑥, 𝑡)	



What gives frequency tuning?


•  I	can	find	at	least	three	mechanisms	which	give	this	
• Details	are	some;mes	hidden	in	the	methods	
•  Figuring	out	which	(or	which	combina;on)	is	physiologically	relevant	
remains	an	important	challenge!	



Resonance (KS)


(KS)	oscilla;ons	can	be	inherent	to	basilar	membrane.	Frequency	tuning	can	arise	from	
resonance	from	input	signal	to	basilar	membrane	oscilla;ons.	
𝑚(𝑥)​𝜕​𝑛↑2 /𝜕​𝑡↑2  +𝑟(𝑥)​𝜕𝑛/𝜕𝑡 +𝑘(𝑥)𝑛= ​𝑃↓2 (𝑥, 𝑛(𝑥,𝑡), 𝑡)− ​𝑃↓1 (𝑥, 𝑛(𝑥,𝑡), 𝑡)	
Assume	m(x)	not	zero,	and	drop	r(x)	for	moment	
𝑚(𝑥)​𝜕​𝑛↑2 /𝜕​𝑡↑2  +𝑘(𝑥)𝑛=𝐹𝑐𝑜𝑠(𝑤𝑡)	
𝑛(𝑡)= ​𝐶↓1 𝑐𝑜𝑠(​𝑤↓0 𝑡)+ ​𝐶↓2 ​sin ⁠(​𝑤↓0 𝑡) + ​𝐹/​𝑤↑2 − ​𝑤↓0↑2  ​cos⁠(𝑤𝑡) 	
Solu;ons	grow	as	w0	=	k(x)1/2	->	w	as	one	typically	finds	in	resonance.		
		
If	r(x)	>	0	we	have	damped	oscilla;ons.	If	r(x)	<0	we	have	sustained	oscilla;ons,	which	would	
then	be	complex	and	likely	coupled.	
		
Recent	work	shows	how	damped	oscillators	are	easier	to	entrain.		



Boundary and other effects


•  If	we	had	viscosity,	and	a	bounded	domain,	there	would	need	to	be	a	
no	slip	condi;on	at	x	=	l.	This	would	keep	the	basilar	membrane	fixed	
at	y	=	0	when	x	=	l,	and	dampen	oscilla;ons	as	we	approach	the	
boundary.	
• But	also,	even	if	we	have	no	viscosity,	we	can	have	frequency	tuning	
and	energy	dissipa;on	due	to	the	s;ffness.	This	is	seen	in	the	(KS)	
analysis.	



Lesser and Berkley




Balance of viscosity and changing s'ffness (P)

Peskin	notes	that	from	von	Békésy	(NP	1961),	BM	acts	as	if	it	were	massless.	We	can	calculate	a		
viscous	boundary	layer	in	several	ways	(dimensional	analysis,	moving	plate,	acous;cs)	to	be:	
√⁠​𝜇/𝜌𝑤  	
The	appropriate	length	scale	is	λ	giving	us	
𝜖=𝜆√⁠​𝜇/𝜌𝑤  = ​𝑥↑−𝜆​𝑥↓𝜖  	
Note	this	constant	is	very	small	(e.g.,	w	=	600,	𝜇	=	0.02).	Now	appeal	to	WKB	theory:	
(█𝑈@𝑉@𝑃 )(𝑥, 𝑦, 𝑡, 𝜖)= (█𝑈@𝑉@𝑃 )(𝑥,− ​𝑥↓𝜖 , ​𝑦/𝜖 , 𝜖)​𝑒↑𝑖(𝑤𝑡+ ​Φ(𝑥− ​𝑥↓𝜖 )/𝜖 ) 	
ℎ(𝑥, 𝑡, 𝜖)=𝐻(​𝑥↓0 − ​𝑥↓𝜖 )​𝑒↑𝑖(𝑤𝑡+ ​Φ(x− ​x↓ϵ )/𝜖 ) 	
𝑋=𝑥− ​𝑥↓𝜖 , 𝑌= ​𝑦/𝜖 , 𝜉(𝑥)= Φ′(𝑥)	
𝑝(𝑥, 𝑦, 𝑡)= −𝑝(𝑥, −𝑦, 𝑡), 𝑢(𝑥, 𝑦, 𝑡)= −𝑢(𝑥, −𝑦, 𝑡)𝑣(𝑥, 𝑦, 𝑡=𝑥(𝑥, −𝑦, 𝑡)	



Solu;ons	of	form:	𝑈= ​𝑈↓0 +𝜖​𝑈↓1 …, 𝑉= ​𝑉↓0 +𝜖​𝑉↓1 , 𝑃=𝜖(​𝑃↓0 +𝜖​𝑃↓1 …), 𝐻= ​𝐻↓0 +𝜖​𝑉↓1 …	
(Change	in	pressure	propor;onal	mo;on	of	basilar	membrane	which	is	size	of	viscus	boundary)	
Subs;tute	into	model	equa;ons.	To	zero	order:	
𝜌𝑤(𝑖− ​1/​𝜆↑2  (− ​𝜉↑2 + ​​𝜕↑2 /𝜕​𝑦↑2  ))​𝑈↓0 +𝑖𝜉​𝑃↓0 =0  	
Which	has	solu;on:	 ​𝑃↓0 (𝑋, 𝑌)= ​𝑃↓0 (𝑋, 0)​𝑒↑√⁠​𝜉↑2  𝑌 ,	 ​𝑈↓0 (𝑋, 𝑌)= − ​𝑃↓0 (𝑋, 0), ​𝑖𝜉/𝑖𝑤𝜌 (​𝑒↑√⁠​𝜉↑2  𝑌 − ​𝑒↑√⁠​𝜉↑2 − ​𝑖𝜆↑2  𝑌 )	
		
At	basilar	membrane:	
𝑈(𝑋, 0, 𝜖)=0, 𝑉(𝑋, 0, 𝜖)= 𝑖𝑤𝐻(𝑥, 0, 𝜖)	
2𝑃(𝑋, 0, 𝜖)= ​𝑠↓0 ​𝑒↑−𝜆𝑥 (1+𝑖𝑤𝐵)​𝑒↑−𝜆​𝑥↓𝜖  𝐻(𝑋, 0, 𝜖)	
		
This	gives	an	equa;on	for	ξ	in	terms	of	w	and	X.		
Finally,	we	integrate	the	zero	order	solu;on	with	the	first	order	solu;on,	to	make	sure	that	none	of	it	
creeps	into	the	1st	order	solu;on.	Ager	much	algebra,	this	gives:	
​𝑃↓0 ​(𝑋, 0)↑2 = ​2𝑤𝜌​𝐶↓0 ​(√⁠​𝜉↑2 +𝑖​𝜆↑2  )↑3 √⁠​𝜉↑2  /𝜉(√⁠​𝜉↑2 +𝑖​𝜆↑2  −√⁠​𝜉↑2  )(√⁠​𝜉↑2 +𝑖​𝜆↑2  √⁠​𝜉↑2  −𝑖​𝜆↑2 ) 	



Numerical Solu'on




What is really happening


•  As	s;ffness	of	basilar	membrane	decreases	as	we	move	along	the	
membrane,	the	basilar	membrane	moves	more	freely	ver;cally	due	to	a	
pressure	difference	
•  As	(P)	assumes	that	the	Cochlea	has	infinite	length,	this	would	con;nue	to	
happen	indefinitely,		
•  However,	as	we	move	along	the	basilar	membrane,	the	viscous	forces	
dissipate	the	energy	from	the	mo;on	of	the	stapes.		
•  Dissipa;on	could	also	occurs	through	B,	but	(P)	chooses	nega;ve	B	which	
gives	beier	frequency	tuning.	(Outer	hair	cells)	
•  This	combined	effect	gives	us	the	frequency	tuning	since	the	dissipa;on	of	
energy	depends	on	the	s;mulus	frequency.	



Efficient auditory coding 
Smith and Lewicki, Nature 2006

• White	noise	analysis	can	be	used	to	determine	the	response	of	
neurons	in	the	auditory	nerve.	White	noise	is	given,	and	spike	
triggered	averaging	is	conducted	(Irino	and	Paierson,	1997)	
• We	can	also	represent	sounds	by	kernel	func;ons	
• 𝑥(𝑡)= ∑↑▒∑↑▒​𝑠↓𝑖↑𝑚 ​𝜙↓𝑚 (𝑡− ​𝜏↓𝑖↑𝑚 )+𝜖(𝑡)  	
• What	proper;es	of	 ​𝜙↓𝑚 	would	give	the	best	representa;ons	of	
sounds?	
•  Trained	on	a	library	of	natural	sounds	

	
	



Found direct match with data 
black environmental sounds along, green animal voicaliza'ons 




What’s next?


• Coincidence	detectors	in	brainstem	
• Work	of	Rinzel	and	Colleagues	
Agmon=Snir	et	al.	Nature	1998	



Integrated models (Meddis)


• Models	including	
•  Basilar	membrane	
•  Inner	hair	cell	response	
•  Auditory	nerve	firing	rate	
•  Cochlear	Nucleus	response	
(Meddis	ISH	2013)	

	
• Used	in	a	new	hearing	aid	

•  Bioaid	
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Chords


•  12	notes	on	keyboard,	repeated	
•  Groups	of	notes	form	chords	
•  Heinichen’s	conMusicalischer	Circul	(1711),	(circle	of	keys)	
•  “emergence	of	twenty-four	major	and	minor	keys	in	Bach’s	Kme	and	the	
well—tempered	tuning	‘that	made	their	use	possible’”	Gardiner	
•  Rameau	(1722)	chords	preserve	1)	octave	shiPs,	2)	permutaKons	and	3)	
doublings	
•  Typically	consider	chords	of	2	or	three	notes	
•  1	=	C,	2	=	C#,	3	=	D,	4	=	D#,	…	
•  3	note	chords	can	be	major	(+4,	+3)	or	minor	(+3,	+4)	
•  (C,	E,	G),	(C,	E♭,	G),	



Euler Tonnetz (1739) 
Wikipedia Tonnetz




Orbifold Analysis 
Tymoczko, “A Geometry of Music” Oxford, 2011






















Bach uses many chords, and many progressions 
for a composer, but a frac'on of all progressions

• Bach	uses	354	of	364	chords	(almost	all	possible	chords)		
•  15073	chord	progressions	recorded	
•  6582	unique	chord	progressions	(so	we	likely	discover	most)	
•  This	is	11%	of	all	possible	chord	progressions	



Most progressions are used once




Chord Progressions 





How many voices are moving 
Red = 1, Blue = 2, Green = 3 (start on three notes, end on three different notes) 
7525 one voice (50%), 7244 two voice mo'ons (48%), 304 three voice mo'ons (2%), 




Three voice mo'ons should be ~1/3 of chord 
progressions

•  Three	voice	progress	appear	304	Kmes	using	208	progressions,	the	
most	common	only	appears	6	Kmes	
• Most	common,	F	G#	B	->	F#	A#	C,	D	F#	A#	->	C	G	A	
	



One voice mo'on 
Green – mo'on by half step, Blue mo'on by whole step 
2485 half step, 3449 whole step, 39.4% of all chord mo'ons, 78.9% of all one voice mo'ons




Voices coming together or coming apart 
5967 'mes  (40%), 2774 of the possible chords (42%)




But voiceparts typically don’t stay together 
1606, 766




And very rarely travel together 
191, 67 green stay put, red move 




What are the near ver'cal or horizontal lines 



•  E	A	A#	to	C	E	A	
•  E	G#	A#	to	C	E	A	
•  E	A	A	to	C	E	A	
•  E	A	B	to	C	E	A	
•  E	A#	A#	to	C	E	A	
• …	

	





Trio 1, 1 layered




Analyzing the chord structure


• Consider	all	chords	that	are	used	in	the	trio	sonatas,	aPer	all	have	
been	transposed	into	the	key	of	C	major	or	A	minor	and	treaKng	all	
inversions	of	a	chord	as	the	same	chord	
• Chord	progressions	form	a	graph	
• Most	central	(pagerank)	chords	are:	
(C,	E,	G),	(E,	G#	B),	(F,	A,	C),	(A,	C#,	E),	(F#,	A,	C#),	(G,	B,D),	(C,	E♭,	G),	
(A♭,	C,	E♭).	





Big Data Approaches to the 
Neuroscience of Performance 

Daniel Forger 
University of Michigan, Ann Arbor




h"p://firstyears.org/anatomy/ear.htm	



h"p://firstyears.org/anatomy/ear.htm	



h"p://firstyears.org/anatomy/ear.htm	



Wikipedia coincidence detecBon in Neurobiology






ExpectaBons




Timbre 
Wikipedia: superior temporal gyrus




Memory




BA 44 and 47 (contours)




A bit about organ history 



•  Tracker	organs	before	1850’s,	where	a	performer	physically	opens	
the	pipes	
•  This	is	not	always	pracAcal	as	the	organ	console	(keyboards)	may	
need	to	be	in	a	different	locaAon	than	the	pipes.	Some	instruments	
have	too	many	pipes	for	tracker	acAon	
• Most	instruments	post	1850’s	involve	some	sort	of	coding	system,	
where	each	note	is	converted	to	an	electrical	signal,	which	is	sent	to	
the	pipes.	
• Many	instruments	encode	this	signal	via	the	MIDI	standard	

• Which	note	was	played,	on	which	keyboard,	when	it	started,	when	it	ended	



Thus, unlike other instruments we have an 
exact representaBon of what was played

•  Some	recent	instrumental	allow	for	a	playback	feature		

•  actually	an	old	idea	
•  Some	instruments	have	midi	ports		

•  This	can	allow	a	connecAon	to	a	computer	to	record	these	signals.	
•  I	have	done	this	for	a	pracAce	instrument	at	my	home	

• Others	have	thumb	drives	to	record	
•  Hill	Auditorium	with	recent	updates	
•  Other	instruments	in	the	area	

	



‘trio	sonata.	A	sonata	for	two	melody	instruments	and	
continuo.	It	was	the	central	instrumental	form	of	the	
Baroque	period.”	Grove	dictionary	of	music	



1st ten notes of my performance of Trio 4 M 1 
in Midimusic format

0.4000				4.6380				1.0000			52.0000			64.0000				0.2000				2.3190	
2.4300				2.3880				2.0000			64.0000			64.0000				1.2150				1.1940	
4.9780				2.2740				2.0000			67.0000			64.0000				2.4890				1.1370	
7.2640				1.6020				1.0000			51.0000			64.0000				3.6320				0.8010	
7.2840				2.1640				2.0000			71.0000			64.0000				3.6420				1.0820	
9.5220				1.7760				2.0000			60.0000			64.0000				4.7610				0.8880	
9.5840				3.3500				1.0000			52.0000			64.0000				4.7920				1.6750	
11.5940				0.8180				2.0000			60.0000			64.0000				5.7970				0.4090	
12.4000				0.3380				2.0000			62.0000			64.0000				6.2000				0.1690	
12.8200				0.3640				2.0000			64.0000			64.0000				6.4100				0.1820	



Ongoing Project 



1)	Develop	a	library	of	digiAzed	performances	of	Bach’s	trio	sonatas	by	
many	performers	and	in	mulAple	locaAons.		
2)	Analyze	this	library	using	exisAng	and	novel	tools	from	data	science	
to	learn	about	the	trio	sonatas,	Bach’s	composiAonal	methods	and	the	
performance	pracAce	of	these	works.		
3)	Review	the	findings	of	our	analysis	with	performers	and	members	of	
the	organ	department	to	compare	our	results	with	their	performance	
pracAce.		
4)	Disseminate	results	through	coursework,	conferences,	open	access	
code	and	publicaAons.		



Many other quesBons 



•  Physiology:	What	aspects	of	the	physiology	of	hearing,	learning	and	
memory	impact	our	appreciaAon	of	these	works?		
• MathemaAcs:	What	mathemaAcal	representaAons	of	these	works	reveal	
interesAng	pa"erns	and	features	that	could	affect	our	appreciaAon	of	
these	works?		
•  ComposiAon:	Can	we	idenAfy	pa"erns	in	these	works	that	can	be	used	to	
help	guide	future	composiAons.		
•  Networks:	How	can	we	use	network	theory	to	represent	the	chord	
progressions	in	these	works.		
•  Performance:	How	can	we	quanAfy	differences	between	performances?	
Which	parts	of	the	works	are	sped	up	or	slowed	down?	Are	there	beats	
that	receive	parAcular	emphasis?	Are	there	common	mistakes	that	can	be	
quanAfied?	How	are	performances	different	on	different	instruments?	
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Preliminary	Results	
	
	Some	used	MIDI	matlab	tools	by	Eeroal	and	Toiviainen	
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ArBstry of Organ Playing is aPack and release


• BWV	540	begins	with	a	cannon.	Right	and	lea	hands	play	same	notes,	
on	top	of	each.	Then	the	pedal	plays	a	very	similar	melody	with	the	
same	moAfs.	This	then	repeats	with	the	lea	hand	starAng	
• Good	test	case	to	determine	differences	in	touch	between	right	hand,	
lea	hand	and	pedal.	
•  Look	at	16th	notes	(most	common).	What	is	their	average	duraAon?	
What	is	the	std	of	their	duraAon?	Coefficient	of	variaAon?	



LeR Hand 
Notes 0-300 on Chanel 2 and notes 279-573 on chanel 3


• Mean	16th	note	duraAon	.16	seconds	
• Coefficient	of	variaAon	.27	
• Mean	Ame	between	16th	notes	.03	seconds	
• VariaAon	of	Ame	between	notes	.045	



Right Hand 
notes 1-273 on channel 3 and notes 320:580 on chanel 2


• Mean	16th	note	duraAon	.14	seconds	
• Coefficient	of	variaAon	.27	
• Mean	Ame	between	16th	notes	.05	seconds	
• VariaAon	of	Ame	between	notes	.045	



Pedal 
Chanel 1

• Mean	16th	note	duraAon	.14	seconds	
• Coefficient	of	variaAon	.18	
• Mean	Ame	between	16th	notes	.07	seconds	
• VariaAon	of	Ame	between	notes	.039	



The first secBon of the work is based on a 
moBf

•  F	–	E	–	F	–C	–	A	–	F	
•  But	this	is	transposed	and	key	is	accommodated	
•  Also	performers	someAmes	make	mistakes	
•  Look	for	leaps	of	[	-	+	-	+	-]	and	which	you	return	aaer	2	notes	and	5	notes	
•  The	general	problem	of	discovering	phrases	in	music	remains	open	
•  Smith	Waterman	Algorithm	variants	are	probably	what	you	should	use.	
•  Here	I’ll	use:	

•  grs	=	(AA((ij+1):(ij+5),	4)	-	AA(ij:(ij+4),	4));	
•  if	max(abs((grs	<0)'+	[-1	0	-1	0	-1]))+abs(sum(grs(1:2))	+	abs(sum(grs)))	==	0	



Note lengths in repeated phrase 
blue pedal, yellow right hand, red leR hand 




What is the coefficient of variaBon of length 
of each note

•  0.2991			
•  0.2905	
•  0.2935	
•  0.2978	
•  	0.2969	
•  	0.3034	

•  This	likely	represents	neuronal	limits	of	informaAon	processing	



Future QuesBons


• Are	there	physiological	limits	to	performance	
• Can	these	be	improved	by	pracAce?	
• How	are	they	different	for	different	individuals?	
• How	are	these	limits	changes	when	sight	reading	(learning	a	piece)?	
• Do	they	depend	on	Ame	of	day?		





Using Math and Neuroscience 
to Generate New Music


Daniel	Forger	
University	of	Michigan	

Ann	Arbor	



“The more art is controlled, limited worked over, the more it is 
free.” 
Stravinsky Poetics of Music	



Bach Trio Sonatas


1. Bach	is	go	to	composer	for	theory	
Never	wrote	a	bad	piece	

2. Trio	Sonatas	were	composed	for	pedagogical	reasons	
3. Fairly	strict	three	voiceparts	
4. Organ	perfect	for	digiEzaEon	

Great	Resource:	MATLAB	Tools	for	Music	Research	
Eerola	and	Toiviainen	



key finding algorithms


• Based	on	the	work	by	Krumhansl	(1990)	we	know	the	chance	an	
individual	thinks	a	note	is	in	a	parEcular	key	aSer	being	trained	to	
that	key	
•  From	that,	we	can	get	a	correlaEon	coefficient	for	any	parEcular	piece	
of	music	for	any	key.	
• Choose	most	likely	key.	

load	daWorsiam	

	keysomanim(gfantwo,2,1);	
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Generate melody based on interval 
distribuAon

•  Look	at	the	possible	intervals	
• Choose	among	them	weighted	by	their	probabiliEes	(e.g.	as	in	
Gillespie)	



Interval distribuAon from trio sonata 
genmusic.m




Generate a Trio Sonata 
genmusicc.m

•  Start	on	three	notes	
•  For	each	note,	look	to	that	voicepart	to	determine	the	probability	of	
going	to	any	other	note.	
•  For	each	voicepart,	chose	a	new	note	
• Combine	all	voiceparts	





We can then draw many possible chords   
Chose randomly based on the probability that 
Bach uses the chord


•  genmusicd	



What would “Hail to the Victors” sound like if Bach 
had scored it as part of one of his trio sonatas. 

•  Start	on	one	of	the	chords	which	Bach	could	use	and	which	contains	
one	of	the	notes	of	the	melody.		
•  Find	in	this	database	where	the	chord	was	used	by	Bach	and	chose	
randomly	among	the	possible	subsequent	chords	one	which	contains	
the	next	note	of	the	melody.		
• Repeat	unEl	we	have	chords	for	notes	in	the	melody.		
• Chose	one	voicepart	to	have	the	melody,	and	the	two	remaining	
voiceparts	from	the	available	notes.		



Hail to the Victors

120

5



Need more constraints


• Perhaps	look	to	neuronal	models	
• Perhaps	models	of	informaEon	processing	in	the	brain/cogniEon	
• Need	melody	and	musical	form	

•  Far	away	from	automaEcally	generaEng	Bach	works	



Using fMRI to decode music


•  Subjects	go	into	a	fMRI	machine	while	listening	to	music	
•  From	the	acEvaEon	of	different	brain	regions,	one	can	decipher	what	
an	individual	is	listening	to.	
•  This	uses	machine	learning	

• Michael	Casey	“Music	of	the	7Ts…”	FronEers	in	Psychology	2017	







SIAM Conference on the Life Sciences Off–Site Event
A Concert/Discussion on Math, Music and the Brain
Daniel Forger, University of Michigan, Ann Arbor

Program: 
• Great Fantasia in G Minor BWV 542 
• Trio Sonata in C Minor BWV 526  
• Trio Sonata in E Minor BWV 528 
• Trio Sonata in C Major BWV 529  
• Toccata in F Major BWV 540 

7 - 8 pm //  Monday, August 6th
Chapel of Westminster 
Presbyterian Church 
1200 S Marquette Ave
Across from Orchestra Hall and a short 
walk down  Nicollet Mall or S. Marquette

The Mathematical Bach




