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Optimization with Optimal Storage

Can we develop algorithms
that reliably solve an optimization problem

using storage that does not exceed
the size of the problem data
or the size of the solution?
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Convex Low-Rank Matrix Optimization

minimize
X∈Hn

f (A X ) subject to trace(X ) =α; X psd

Details:
§ A :Hn →Rd is a real-linear map on n ×n Hermitian matrices
§ f :Rd →R is convex and differentiable

§ In many applications,
§ A extracts d linear measurements of n ×n matrix
§ f = loss( · ;b) for data b ∈Rd

§ d ¿ n2

§ αmodulates rank of solution

§ Models problems in signal processing, statistics, and machine learning
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Optimal Storage

What kind of storage bounds can we hope for?

§ Assume black-box implementation of operations with linear map:

u 7→A (uu∗) (u, z) 7→ (A ∗z)u

Cn →Rd Cn ×Rd →Cn

§ Need Θ(n +d) storage for output of black-box operations

§ Need Θ(r n) storage for rank-r approximate solution of model problem

Definition. An algorithm for the model problem has
optimal storage if its working storage is Θ(d + r n) rather than Θ(n2).

Source: Yurtsever et al. 2017; Cevher et al. 2017.
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So Many Algorithms...

§ 1990s: Interior-point methods
§ Storage cost Θ(n4) for Hessian

§ 2000s: Convex first-order methods
§ (Accelerated) proximal gradient, spectral bundle methods, and others
§ Store matrix variable Θ(n2)

§ 2008–Present: Storage-efficient convex first-order methods
§ Conditional gradient method (CGM) and extensions
§ Store matrix in low-rank form O (tn); no storage guarantees

§ 2009–Present: Nonconvex heuristics
§ Burer–Monteiro factorization idea + various nonlinear programming methods
§ Store low-rank matrix factors Θ(r n)
§ For guaranteed solution, need unrealistic + unverifiable statistical assumptions

Sources: Interior-point: Nemirovski & Nesterov 1994; ... First-order: Rockafellar 1976; Helmberg & Rendl 1997;
Auslender & Teboulle 2006; ... CGM: Frank & Wolfe 1956; Levitin & Poljak 1967; Jaggi 2013; ... Heuristics: Burer &
Monteiro 2003; Keshavan et al. 2009; Jain et al. 2012; Candès et al. 2014; Bhojanapalli et al. 2015; Boumal et al. 2016; ....
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The Challenge

§ Some algorithms provably solve the model problem...

§ Some algorithms have optimal storage guarantees...

Is there an algorithm
that provably computes

a low-rank approximation
to a solution of the model problem
+ has optimal storage guarantees?
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SketchyCGM
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Geometry of CGM

D

{Y : g (Y ) ≤ g (X )}

−∇g (X )

X

uu∗ = H

X +

H = arg max
Y ∈D

〈
Y , −∇g (X )

〉
X + = (1−η)X +ηH

min
X∈D

g (X )

D = {Y psd : trace(Y ) = 1}
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CGM for the Model Problem

Input: Problem data; suboptimality ε
Output: Approximate solution X cgm

1 function CGM
2 X ← 0 . Initialize variable
3 for t ← 0,1,2,3, . . . do
4 u ← MinEigVec(A ∗(∇ f (A X ))) . Lanczos!
5 H ←−αuu∗ . Form update direction
6 if

〈
X −H , A ∗(∇ f (A X ))

〉≤ ε
7 then break for . Stop when ε-suboptimal
8 η← 2/(t +2) . Update step size
9 X ← (1−η)X +ηH . Update variable

10 return X

Comment: In notation of last slide, g = f ◦A . The gradient ∇g =A ∗ ◦∇ f ◦A .

Sources: Frank & Wolfe 1956; Levitin & Poljak 1967; Hazan 2008; Clarkson 2010; Jaggi 2013.
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Crisis / Opportunity

Crisis:

§ CGM needs many iterations to converge to a near-low-rank solution
§ The ε-rank of the CGM iterates can increase without bound
§ CGM requires high + unpredictable storage
§ Typically involves dynamic memory allocation

Opportunity:

§ Modify CGM to work with optimal storage!
§ Drive the CGM iteration with small “dual” variable z =A X

§ Maintain small randomized sketch of primal matrix variable X

§ After iteration terminates, reconstruct matrix variable X from sketch

Source: Yurtsever et al. 2017.
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SketchyCGM for the Model Problem

Input: Problem data; suboptimality ε; target rank r
Output: Rank-r approximate solution X̂ =VΛV ∗ in factored form

1 function SKETCHYCGM
2 SKETCH.INIT(n,r ) . Initialize SKETCH to zero
3 z ← 0
4 for t ← 0,1,2,3, . . . do
5 u ← MinEigVec(A ∗(∇ f (z))) . Lanczos!
6 h ←A (−αuu∗)
7 if

〈
z −h, ∇ f (z)

〉≤ ε then break for

8 η← 2/(t +2)
9 z ← (1−η)z +ηh

10 SKETCH.CGMUPDATE(−pαu,η) . Update sketch of X

11 (V ,Λ) ← SKETCH.RECONSTRUCT( ) . Approx. eigendecomp of X
12 return (V ,Λ)

Source: Yurtsever et al. 2017.
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Methods for SKETCH Object

1 function SKETCH.INIT(n, r ) . Rank-r approx of n ×n psd matrix
2 k ← 2r . Increase k for better quality
3 Ω← randn(C,n,k)
4 Y ← zeros(n,k)

5 function SKETCH.CGMUPDATE(s , θ)
6 Y ← (1−θ)Y +θs(s∗Ω) . Average ss∗ into sketch

7 function SKETCH.RECONSTRUCT( )
8 C ← chol(Ω∗Y ) . Cholesky decomposition
9 Z ← Y /C . Solve least-squares problems

10 (U ,Σ,∼) ← svds(Z ,r ) . Compute r -truncated SVD
11 return (U , Σ2) . Return eigenvalue factorization

Sources: Williams & Seeger 2001; Drineas & Mahoney 2005; Gittens 2011, 2013; Pourkamali-Anaraki & Becker 2016;
Wang, Gittens, & Mahoney 2017; Tropp et al. 2017.
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Less Filling / Great Taste

Theorem 1 (YUTC 2016). SKETCHYCGM has the following properties:

§ SKETCHYCGM has optimal storage guarantee Θ(d + r n)

§ SKETCHYCGM produces an ε-suboptimal objective value after O (ε−1) iterations

§ Suppose CGM produces iterates X t that converge to a rank-r matrix X cgm. Then
SKETCHYCGM produces rank-r iterates X̂ t that satisfy

E
∥∥X̂ t −X cgm

∥∥
S1
→ 0.

Source: “Everything you always wanted in an algorithm. And less.”
https://www.youtube.com/watch?v=0agZEMEpiVI.
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Performance of.
SketchyCGM
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Fourier Ptychography

Wirtinger Flow Burer–Monteiro SKETCHYCGM

29 illuminations; 80×80 pixels each; d = 1.86 ·105 measurements
image size n = 160×160 pixels; matrix size n2 = 6.55 ·108

SKETCHYCGM storage (rank r = 1): 6.53 ·105

quadratic loss

Sources: Burer & Monteiro 2003; Balan et al. 2008; Chai et al. 2011; Zheng, Horstmeyer, & Yang 2013; Horstmeyer &
Yang 2014; Candès et al. 2014; Horstmeyer et al. 2015; Yurtsever et al. 2017.
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Fourier Ptychography: Malaria Phase Gradients

∆x

∆y

Wirtinger Flow Burer–Monteiro SKETCHYCGM
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MovieLens 10M

§ m = 71,567 users, n = 10,681 movies, d = 107 ratings, dim. mn = 7.64 ·108

iterations
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SketchyCGM: r = 25

SketchyCGM: r = 50

SketchyCGM: r = 100

SketchyCGM: r = 200

CGM

Approximate storage costs
.

Rank (r ) SKETCHYCGM
25 3.28 ·107

50 4.51 ·107

100 6.98 ·107

200 1.19 ·108

Source: Harper & Konstan 2015; Yurtsever et al. 2017.
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To learn more...

E-mail: jtropp@cms.caltech.edu
Web: http://users.cms.caltech.edu/∼jtropp
Papers:

§ Halko, Martinsson, & Tropp, “Finding structure with randomness: Probabilistic algorithms for computing
approximate matrix decompositions,” SIAM Review, 2011

§ Horstmeyer et al. ‘‘Solving ptychography with a convex relaxation,” New J. Physics, 2015

§ Tropp, Yurtsever, Udell, & Cevher, “Fixed-rank approximation of a positive-semidefinite matrix from streaming data,”
NIPS, 2017

§ Tropp, Yurtsever, Udell, & Cevher, “Practical sketching algorithms for low-rank matrix approximation,” SIMAX, 2017

§ Tropp, Yurtsever, Udell, & Cevher, “More practical sketching algorithms for low-rank matrix approximation,” soon!

§ Yurtsever, Udell, Tropp, & Cevher, “Sketchy decisions: Convex low-rank matrix optimization with optimal storage,”
AISTATS, 2017

§ Cevher, Tropp, & Yurtsever, “Storage-optimal algorithms for semidefinite programming,” eventually!
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