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Problem: Find the important part of a matrix

Best approximation to A by a matrix B of rank k

min ||A−B|| = σk+1 for B = σ1u1v
T
1 + · · ·+ σkukv

T
k



S =

[
1 2
2 4

]
one independent column rank = 1

=

[
1
2

] [
1 2

]
column times row (n× 1)(1× n) = n× n

= 5

[
1√
5
2√
5

] [
1√
5

2√
5

]
unit column vector q

= λqqT q = eigenvector of S, λ = 5 = eigenvalue of S

Flag of France (rank 1)

=


B B W W R R
B B W W R R
B B W W R R
B B W W R R

 =


1
1
1
1

 [B B W W R R
]



Symmetric matrices ST = S

Sq = λq S [q1 . . .qn] = [λ1q1 . . . λnqn] SQ = QΛ

Orthogonal eigenvectors QTQ =

qT1
...

qTn


q1 . . .qn

 =

1 . . .

1


QT = Q−1 and S = QΛQT = λ1q1q

T
1 + · · ·+ λnqnq

T
n

Rank one pieces → columns q times rows qT



A = (rotation) (stretching) (rotation)
= (orthogonal U) (diagonal Σ) (orthogonal V T )

Any matrix A = UΣV T Symmetric matrix S = QΛQT

Singular Value Decomposition Spectral Theorem

AV = UΣ means Avi = σiui SQ = QΛ means Sqi = λiqi



ATAv = λv Multiply by A (AAT )Av = λAv

AAT has same eigenvalues λ > 0 as ATA

AAT has eigenvectors u = Av√
λ

ATA = V ΛV T AAT = UΛUT

The goal is the SVD A = UΣV T with σi =
√
λi

λ1 ≥ λ2 ≥ · · · ≥ λr > 0 σ1 ≥ σ2 ≥ · · · ≥ σr > 0

v’s are right singular vectors, u’s are left singular vectors



Crazy proof of the SVD

A(ATA) = (AAT )A

AV ΛV T = UΛUTA

UTAV Λ = ΛUTAV

UTAV commutes with diagonal matrix Λ

Suppose none of the λ’s is repeated

UTAV is also diagonal!!! Call it Σ

Then ΣTΣ = Λ σi =
√
λi



ATA AAT A
eigenvalues λ1 ≥ λ2 ≥ . . . λr > 0 σi =

√
λi

ATAv = λv AATu = λu Av = σu
V TV = I UTU = I orthonormal u’s and v’s

ATA = V ΛV T AAT = UΛUT A = U
√

ΛV T (the SVD)

= λ1v1v
T
1 + = λ1u1u

T
1 + = σ1u1v

T
1 +

λ2v2v
T
2 + · · · λ2u2u

T
2 + · · · σ2u2v

T
2 + · · ·

Columns of V,U multiply rows of V T , UT : rank one pieces



Transmitting a rank one matrix A = uvT

Don’t send


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 Send


1
1
1
1
1
1


[
1 1 1 1 1 1

]

12 numbers instead of 36 numbers

2N numbers instead of N2 numbers

Flag with 3 stripes also has rank 1

Don’t send


a a c c e e
a a c c e e
a a c c e e
a a c c e e
a a c c e e
a a c c e e

 Send


1
1
1
1
1
1


[
a a c c e e

]

France, Italy, Germany, 20 more countries have 3 stripes



2 by 2 triangular matrix Rank 2

A =

[
1 0
1 1

]
=

[
1
1

] [
1 1

]
−
[
1
0

] [
0 1

]
No saving to compress a 2 by 2 image!

The example shows rank 2 = u1v
T
1 + u2v

T
2

Many choices for the u’s and v’s / this choice was not the SVD

The SVD choice: uT1 u2 = 0 vT1 v2 = 0 ||u2|| ||v2|| → min

u1v1
T is the closest rank 1 matrix to A



A =

[
1 0
1 1

]
= σ1u1v

T
1 + σ2u2v

T
2

SVD gives σ1 =

√
5 + 1

2
≈ 1.6 σ2 =

√
5− 1

2
≈ 0.6

Remember σ21, σ
2
2 = eigenvalues of ATA =

[
2 1
1 1

]
Example 2 = Hilbert matrix = very compressible!

Hij =
1

i+ j + 1
= symmetric positive definite

This Hilbert matrix is nearly singular and very ill-conditioned

Determinant of H is incredibly small



Not much decay for a lower triangular matrix of 1’s

Fast decay for the Hilbert matrix (and many others)



Key to applications

The nearest rank k matrix to A: Truncate the SVD

Ak = σ1u1v
T
1 + · · ·+ σkukv

T
k

“Pieces of A in order of importance”

Most useful when the σ’s are exponentially decreasing.



Symmetric S = QΛQT = λ1q1q
T
1 + · · ·+ λNqNqTN

Any matrix A = UΣV T = σ1u1v
T
1 + · · ·+ σNuNvTN

Could find these pieces (column × row) one at a time

The top eigenvector x = q1 = u1 gives λ1 and σ21

λ1 = max
xTSx

xTx
= largest eigenvalue of S

σ21 = max
||Ax||2

||x||
= max

xTATAx

xTx
= (largest singular value)2

This shows how S (symmetric) corresponds to ATA

λ (positive) corresponds to σ2



Principal Component Analysis (PCA)

Find the closest line (or closest subspace) to n data points

Centered matrix A = A0 − (average of each row)

Every row of A adds to zero: The mean has been subtracted.

n columns in original A0 give the data from the n individuals

One row could record heart rate for all individuals

Want to find the important information in A0 and A

Data comes in a matrix!



Principal Components when A has m = 2 rows

Each column of A is a point (x, y). Each row adds to zero.

Average x and average y are zero: data is centered at (0, 0)

PCA finds the closest line to the data

Closest = smallest sum of (perpendicular distances)2

S = AAT = (2 by n)(n by 2) = 2 by 2

Top eigenvector u1 gives the closest line

Finance, genetics, model reduction, many applications



S = AAT /(N − 1) is the sample covariance matrix

Each σ2i tells how much of S is “explained” by ui

Total variance = σ21 + · · ·+ σ2m = trace of S

In practice: Stop when σ2i is small

This gives the “effective rank” of S and A

A =

[
3 −4 7 1 −4 −3
7 −6 8 −1 −1 −7

]
has S =

AAT

5
=

[
20 25
25 40

]



Research question with Alex Townsend

Start from f(x, y) on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Create N by N matrix Aij = f
(
i
N ,

j
N

)
= “picture of f”

Is this matrix compressible like Hilbert?

Is it incompressible like this triangular flag? Circular flag?

A =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 comes from f(x, y) =

{
1 x ≥ y
0 x < y

US flag and UK flag are incompressible / they have diagonals

What is the rank of the Japanese flag? Circle.



1− 0 matrix A with a circular disk of all 1’s. Radius R.

rank ≈ 2

(
R− R√

2

)
=
(
2−
√

2
)
R

Remarkable fact: singular values σ ≥ 1 constant



Townsend found a description of compressible matrices C

Solve Sylvester’s equation AC − CB = F

1. F should have rapidly decreasing σ’s

2. Eigenvalues of A should be separated from eigenvalues of B

Singular value decay for C depends on rational approximation

Rational approximation is often exponentially close
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