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Introduction

• Inverse modeling in hydrogeology seeks the characterization of
spatially distributed parameters defined over a model domain
based on observations of state variables.

• We employ a gradient-based numerical optimization method,
Levenberg-Marquardt method, to solve the hydrogeologic inverse
modeling problem.

• The core of the Levenberg-Marquardt algorithm involves the
selection of the damping parameter and the linear solve for the
search direction at every iteration.

• The linear solve can be computationally intensive, which hinders
the applications of LM-algorithm based inverse modeling methods
to large-scale or even moderate hydrogeology models.

• We apply a computationally efficient Krylov-subspace-recycled
iterative linear solver to solve the linear system at every iteration.
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Hydrogeologic Inverse Modeling - Illustration

• Input: Measured values (hydraulic heads) at N observation wells.

• Output: Model parameter values (conductivity or transmissivity)
at every grid node of the model.
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Forward Problem

The forward problem of hydrogeologic inverse modeling is governed by
the groundwater flow equation,

Groundwater Flow Equation

∇ · (T∇h) = g
g(x , y) = 0
∂h
∂x

∣∣∣∣
a,y

=
∂h
∂x

∣∣∣∣
b,y

= 0

h(x , c) = 0,h(x ,d) = 1

where h is the hydraulic head, T is the transmissivity and g is a
source/sink (here, set to zero).
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Forward Problem

Using the operator, the forward modeling problem of the hydrogeologic
inverse modeling can be simplified as,

Groundwater Flow Equation - Operator Form

h = f (T),

where f (·) is the forward operator mapping from the model parameter
space to the measurement space.
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Inverse Problem

Correspondingly, the problem of model calibration can be posed as a
damped least-squares problem,

Hydrogeologic Inverse Modeling

x = arg min
x
{f (x)} ,

= arg min
x

{
‖d− f (x)‖2R + λ ‖x− x0‖2Q

}
,

where d represents a recorded hydraulic head dataset, x is the
calibrated model parameter, x0 is the prior model parameters,
‖d− f (x)‖22 measures the data misfit, || · ||2 stands for the L2 norm, and
R is the covariance matrix for the data error and Q is the covariance
matrix for the model parameters.
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Numerical Optimization Methods - Fundamental

• Line search optimization is an iterative method usually posed as,

Line search optimization

x(k+1) = x(k) + α(k)p(k),

where k is the iteration index, the vector p(k) is the search
direction and α(k) is the step length.

• Different optimization methods are developed according to the
selection of the descent direction, p(k).

• First-Order Method: Steepest Descent Method

• Second-Order Method: Newton-Type Methods and
Levenberg-Marquardt (LM) Method.
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Numerical Optimization Methods - Fundamental

• Search direction of Steepest Descent Method, Newton-Type
Methods and Levenberg-Marquardt (LM) Method:

• Steepest Descent Method: p(k) = −∇f (k).
• Newton-Type Methods: p(k) = −((J(k))′J(k) + S(k))−1∇f (k), where

J(k) = J(x(k)) is the Jacobian matrix for the model parameter x(k)

and S(k) is the higher-order term in Hessian.
• Levenberg-Marquardt (LM) Method:

p(k) = −
[
(J(k))′J(k) + µ diag((J(k))′J(k))

]−1∇f (k), where µ is the
damping parameter and in the Levenberg version of the LM
method, J(k) = I.

• We choose Levenberg-Marquardt (LM) Method because:

• LM method can be superior to steepest descent or Newton-type
methods in that it converges much faster than steepest descent and
is more robust to the initial guess than Newton-type methods.

• LM method can be more stable than either steepest descent
method or Newton-type method in the cases when the inverse
problem becomes ill-posed.
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Conventional Levenberg-Marquardt Method

• The LM method can be seen as a combination of the steepest
descent method and Newton-type methods.

• The damping parameter of µ plays an important role in ensuring
the search direction in the parameter space provides an optimal
balance between first-order and second-order optimization steps.

• The heuristic to update the damping parameter, µ(k),

µ(k+1) =


β · µ(k) if ρ < ρ1
µ(k)

γ if ρ > ρ2

µ(k) otherwise

,

and the gain factor, ρ, can be defined as,

ρ =
f (x)− f (x + h)

L(0)− L(h)
.
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Conventional Levenberg-Marquardt Method

Algorithm 1 Conventional Levenberg-Marquardt Method - Major Steps

1: if {Jacobian needs updated} then
2: Calculate the new Jacobian matrix;
3: end if
4: Solve for the search direction p(k);
5: if {Stopping criterion are satisfied} then
6: Return with solution x(k);
7: else
8: Obtain the current solution, xnew = x(k) + p(k);
9: if {Damping parameter is appropriate} then

10: Update the iteration, x(k+1) = xnew;
11: else
12: Update the damping parameter µ;
13: end if
14: end if
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Conventional Levenberg-Marquardt Method

• In most existing hydrogeologic inverse modeling, direct solvers
such as QR decomposition or singular value decomposition (SVD)
based methods are used to solve for p(k).

• These existing hydrogeologic inverse modeling methods can be
rather computationally expensive for two reasons:

• The Jacobian matrix can be large and sparse, therefore the direct
methods will not appropriate.

• The re-calculation of p(k) can be expensive when searching for the
optimal damping parameter.

• How can we improve the computational efficiency?
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LM Method Revisit - Exploring the Matrix Structure

• The Levenberg version of the LM Method:
p(k) = −

[
(J(k))′J(k) + µ I

]−1∇f (k) can be posed equivalently as a
matrix form,

Levenberg-Marquardt Method in Matrix Form

p(k) = arg min
pk

{∥∥∥∥[J(k)
√
µ I

]
p(k) −

[
−r (k)

0

]∥∥∥∥
2

}
,

• We observe that,
• The system matrices consist of two parts: the Jacobian matrix J(k)

and the diagonal matrix and both of them can be large and sparse
when the measurements and model increases.

• At any iteration, the Jacobian matrix remains the same while the
damping parameter µ can vary.
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Efficient LM Method - Krylov Subspace Solvers

• Definition of Krylov Subspace,

Kn(A, r0) = span
{

r0,A r0,A(2) r0, . . . ,A(n−1) r0

}
• The basic idea of a Krylov solver is to construct a sequence of

approximations getting closer to the exact solution x, such that

xn ∈ x0 +Kn(A, r0)

• We select the LSQR method, a type of Krylov Subspace Method,
considering its superior performance of accuracy and efficiency in
solving large-scale ill-posed problems.
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Efficient LM Method - LSQR Iterative Method

• The Krylov subspace generated at the k th step using LSQR
method,

Kk = span
{

(J(k))′J(k) + µI,−(J(k))′r (k)
}
,

= span
{

(J(k))′J(k),−(J(k))′r (k)
}
.

• We observe that the Krylov subspace generated for the damped
least-squares problem is independent of the damping parameter µ.

• This gives us the hint to generate a common subspace using a
initial damping parameter and project the remaining damping
down-to the generated subspace.
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Efficient LM Method - Recycled LSQR Method

• Krylov Subspace Generate Step
• The Golub-Kahan-Lanczos (GKL) bidiagonalization technique

β(1)U(k+1)e(1) = b,

AV (k) = U(k+1)B(k),

A′U(k+1) = V (k)(B′)(k) + α(k+1)V (k+1)e′(k+1)
,

where the unit vector e(i) has value 1 at the i th location and zeros
elsewhere, i.e., e(i) =

[
0, . . . ,1, . . .0

]
.

• The GKL bidiagonalization procedure also generates a subspace,
which is spanned by the column vectors in Vk , i.e.,

Kk = span(V (k)) = Kk (A′ A,A′ b).
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Efficient LM Method - Recycled LSQR Method

• Subspace Projection and Recycling Step
• A three-term-recursion to update the solution x(k) at each iteration

step can be obtained,

x(k) = x(k−1) + φ(k)z(k),

z(k) =
1
ρ(k)

(v(k) − θ(k−1)z(k−1)).

• The major computational cost is the GKL recursion procedure in
generating the Krylov subspace. The three-term-recursion
procedure to update the solution by projection is computationally
efficient in comparison.
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Efficient LM Method - Summary

Algorithm 2 Efficient Levenberg-Marquardt Method - Solution of
Search Direction

1: if {Initial damping parameter} then
2: Generate the Krylov subspace;
3: else
4: Recycle the subspace generated previously;
5: end if
6: Solve the search direction p(k) by projection;

• Extension to Marquardt’s version of the LM method - Variable
Substitution

p̄(k) = arg min
p̄k

{∥∥∥J̄(k)p̄(k) − (−r (k))
∥∥∥2

2
+ µ‖p̄(k)‖22

}
,

where J̄(k) = J(k)D−1 and D = diag
(
(J(k))′J(k)).
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Computational Cost Analysis - Setup

• Assume that the number of model parameter is m̃, the number of
observations is ñ, hence the size of the Jacobian matrix ñ × m̃.

• As a reference method, we choose the linear solver via the most
often used QR decomposition to solve the LM search directions,
denoted as “LM-QR”.

• We denote our new LM method as “LM-RLSQR” and “R” stands
for “recycled”.

• We report both the computational costs using the initial damping
parameter as well as using the rest of the damping parameters.
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Computational Cost Analysis - LM-QR Method

• Given an initial guess of the damping parameter, the associated
computational costs are

COSTLM−QR−Initial ≈ O(ñ × m̃2) +O(m̃3) +O(ñ × m̃) +O(m̃2),

where the first term is associated with forming the normal
equation, the second term associating with the QR factorization,
the third term associating with forming the right hand-hand side,
and the fourth term associating with the back-substitution for the
solution.

• Once the damping parameter is updated, some of the calculation
can be saved and reused. However, the expensive QR
factorization and the back-substitution cannot be avoided,
therefore the costs for the updated damping parameter will be,

COSTLM−QR−Rest ≈ O(m̃3) +O(ñ × m̃) +O(m̃2).
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Computational Cost Analysis - Efficient LM
Method

• Assuming the dimension of the Krylov subspace to be k1, the cost
associated using the initial damping parameter is,

COSTLM−RLSQR−Initial ≈ k1 · O(m̃ × ñ),

• The computational cost for solving for the search directions of the
rest of the damping parameters is,

COSTLM−RLSQR−Rest ≈ k1(n − 1) · O(m̃).

where n is the number of µ values that are being used.

• To compare the total computational costs associated with the
LM-QR and LM-RLSQR, we conclude that the cost associated
with LM-QR is much more expensive than the one with
LM-RLSQR.
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Performance on Benchmark Testing Functions

Problem Function Name Reference
1 Dixon-Price Dixon and Price, 1989
2 Griewank Locatelli, 2003
3 Powell Powell, 1964
4 Rosenbrock Dixon and Szego, 1978
5 Rotated Hyper-Ellipsoid Molga and Smutnicki, 2005
6 Sphere Picheny et al., 2013
7 Sum Squares Hedar, 2013

Table: Set of benchmark testing functions

• The results of the following are reported,
• Linear Solver Time V.S. Total Time
• Number of Gradient Evaluation V.S. Number of Total Iteration
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Performance on Benchmark Testing Functions

Problem Size

100 200 300 400 500 600 700 800 900 1000
10

2

10
3

10
4

Gradient Evaluation

Total Iteration

Gradient Evaluation V.S. Total Iteration on Rosenbrock function

• Significant amount of trials are needed for the optimal damping
parameters at every LM iteration.
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Performance on Benchmark Testing Functions
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Time Profiles on the Rosenbrock function

• The “LM-QR” (red circle) wins the most when problem size is
small.

• The “LM-RLSQR” (green box) dominates for most of the testing
cases.
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Performance on Benchmark Testing Functions
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Counts of Wins on the Computational Time Costs

• The “LM-QR” (in blue) wins the most when problem size is small.
• As the size of the problem increases, “LM-LSQR” (in cyan) wins

occasionally and “LM-RLSQR” (in yellow) wins most of times.
• When the size of the problem becomes large, “LM-RLSQR”

dominates the other two methods.
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Model Calibration in Hydrology - True Model
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True Model
• Synthetic transmissivity field.
• Hydraulic conductivity and hydraulic head observation locations

are indicated with circles.
• Model dimension, 69× 69, (a total of 9660 model parameters)
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Model Calibration in Hydrology - Inversion Results
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Results of LM-QR Method

• A total number of 10 iteration steps are needed before a full
convergence.

• At iteration step of 4 and 5, there are multiple trials needed to
search for the damping parameter.
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Results of LM-LSQR Method

• At every iteration step, the length of the blocks at the first trial are
mostly shorter than those obtained using LS-QR method.

• Each extra trial for an acceptable LM descent direction yields less
computational time by comparing to LS-QR method.
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Model Calibration in Hydrology - Inversion Results
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Results of LM-RLSQR Method

• At iteration steps 4 and 5, the same number of trials for an
acceptable LM damping parameter are needed.

• The time costs are significantly saved, even though they are hard
to visualize because of the small time costs associated.
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Model Calibration in Hydrology - Time Costs
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Overall
• Five different model sizes including 1300, 2520, 4140, 6160, and

9660 are tested.
• Both time costs on linear solver and the total time using our

LM-RLSQR method are always less than the time costs of the
other two methods for these problems.
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Conclusions

• We have developed an approach to hydrogeologic inverse
modeling employing our new computationally efficient
Levenberg-Marquardt algorithm.

• we recycle the Krylov subspace in-between linear systems sharing
the same Jacobian matrix, but different damping parameters.

• Through our numerical results, we show that our new LM method
yields an improved computational efficiency over both “LM-QR”
and “LM-LSQR” methods.

• We implement our new LM algorithm using Julia in the MADS
computational framework (http://madsjulia.lanl.gov/), which can be
downloaded at https://github.com/madsjulia/Mads.jl.
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