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Sobolev metrics on the shape space of closed curves



The Manifold of Curves

Let d > 2. The space of closed, parametrized curves is

Imm(SY,RY) = {c e C=(S},RY) : '(A) # 0} ¢ C(SL,RY).
The tangent space of Imm(S*, R9) at a curve c is the set of all
vector fields along c,

TRY
Telmm(SYL,RY) =< h: h lp = {h € Cm(Sl,Rd)} .
§l_€ . Rd

Arclength differentiation and integration

L /
Ds = m@g, ds = |c'(6)]d0.



The Manifold of Curves

Let d > 2. The space of closed, parametrized curves is
Imm(St,RY) = {c € C®(S,RY) : /() # 0} c C=(S,RY).

The tangent space of Imm(S*, R9) at a curve c is the set of all
vector fields along c.

Figures taken from [M. Bauer, P..Harms, P.W. Michor, 2012]



Different Parameterizations

—

c,d:S! = R?,

c=doyp,  ¢eDiff(S!)



Definition of shape space

\\ \ | <§/ Imm(St, R9)

e Imm(SYRY)/Diff(SY) = Bi(SLRY)




Reparametrization Invariance

Imm(St, RY)
Imm(St, RY)/ Diff(S?)

A Diff(S!)-equivariant metric

“above” induces a metric “be-
low” such that 7 is a Riemannian
submersion.

y

Gc(hv k) = Gcoso(h op, ko 90)



Sobolev Metrics and Geodesic Distance

» A Sobolev metric on Imm(S!, RY) is a metric of the form
Ge(h, k) = / ag(h, k) + a1(Dsh, Dsk) + - - - + an(Dh, D] k) ds ,
St

with a; € RT, ag > 0.
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Sobolev Metrics and Geodesic Distance

» A Sobolev metric on Imm(S!, RY) is a metric of the form
Ge(h, k) = / ag(h, k) + a1(Dsh, Dsk) + - - - + an(Dh, D] k) ds ,
St

with a; € RT, ag > 0.

» Sobolev metrics satisfy the reparametrization-equivariance
property:
Geop(ho @, ko) = Ge(h, k)

for all ¢ € Diff(S?).
» They are in addition equivariant to the action on the left by
the group of rigid motions:

Gres+b(Rh, RK) = Ge(h, k)

for all (R, b) € SO(d) x RY



Sobolev Metrics and Geodesic Distance

The distance between two paramerized curves is then defined as
the infimum over all path lengths

1
dist(c1, ) = inf/ vV Ge(c, cr) dt
¢ Jo

subject to ¢ € C*([0, 1], Imm(St, R9)) with ¢(0) = c1,¢(1) = c».
This pathlength metric separates curves in Imm(S!, R?) provided
G is stronger than H!.



Induced quotient metric

On the shape space of unparametrized curves, the induced distance
becomes
dist ,[e2]) = inf dist(cy, ¢
st(lal.le]) = _inf  distc.c200)
Considering the space of free immersions
Imm¢(St,RY) = {c € Imm(S},RY) | cop = c = ¢ = Id} and its
quotient B; ¢(SY,RY) = Imm¢(St, R¥)/ Diff(S'), one obtains

Theorem

For d > 2, a Sobolev metric with constant coefficients on
Imm(St, R9) induces a metric on B; ¢(St,R9) such that the
projection 7 : Imm¢(S*, RY) — B; ¢(S*,R9) is a Riemannian
submersion.



Computing the distance and geodesics

Finding the distance between two given unparametrized closed
curves [c1] and [cz] amounts in solving the following variational
problem over all paths c(t,-) € Imm(S!,RY) and reparametrization
functions ¢ € Diff(S!):

1
dist([c1], [e2]) = |Cn£ {/o V Ge(ct,cr)dt, ¢(0) =c1,c(l) =0 go}

Numerically, the approach of [Mgller-Andersen 2017] discretizes
both the curves and reparametrization functions using B-splines,
which involves an extra projection step on ¢ o .



Computing the distance and geodesics

Finding the distance between two given unparametrized closed
curves [c1] and [cz] amounts in solving the following variational
problem over all paths c(t,-) € Imm(S!,RY) and reparametrization
functions ¢ € Diff(S!):

1
dist([c1], [e2]) = |Cn£ {/o V Ge(ct,cr)dt, ¢(0) =c1,c(l) =0 go}

Numerically, the approach of [Mgller-Andersen 2017] discretizes
both the curves and reparametrization functions using B-splines,
which involves an extra projection step on ¢ o .

Idea: reformulate the problem as a minimization over ¢ only with a
constraint of the form d(c(1), ¢z) = 0, where d is a
parametrization-invariant distance between curves.



Varifold representations and metrics



Immersed curves as varifolds

Definition
A 1-dimensional (oriented) varifold of R is a distribution in W*,
where W < CO(R? x S91) is a Banach space of test functions
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Immersed curves as varifolds

Definition
A 1-dimensional (oriented) varifold of R is a distribution in W*,
where W < CO(R? x S91) is a Banach space of test functions

on RY x §9-1,

For any ¢ € Imm(St,RY), we define j € W* such that for all

we W: .
) = [ o (e S ) o

One can check that for any ¢ € Diff"(S!), pcop = puc



Immersed curves as varifolds (oriented)

This leads to the diagram

Imm(St, RY) a

lﬁ []

Imm(S?, RY)/ Difft(S?)



Immersed curves as varifolds (unoriented)

If, in addition, W is restricted to a space of antipodal-symmetric
functions, i.e Yw € W, w(x, —u) = w(x, u) for all
(x,u) € RY x S92 then:

Imm(St, R9) a W

(1]

Imm (S, RY)/ Diff(S?)



The varifold distance on unparametrized curves

Principle: obtain an induced distance between curves from a simple
metric on the varifold space W*.



The varifold distance on unparametrized curves

Principle: obtain an induced distance between curves from a simple
metric on the varifold space W*.

We construct a particular class of test function space W as
follows:

o Let kpos(x,y) = p(|x — y|?) for x,y € R? be a continuous
radial positive kernel on RY.

e Let kean(u,v) = y(u-v) for u,v € S~ be a continuous
zonal positive kernel on S9-1.

e Define k(x,u,y,v) = p(|x — y|*).7(u - v). Then k is a
continuous positive kernel on R? x S=1. We define W to be
the Reproducing Kernel Hilbert Space (RKHS) associated
to k. By construction W < CO(R? x S9-1).



The varifold distance on unparametrized curves

We can now define for all c1, c; € Imm(St, R9):

dV¥ (c1, @) = |le,— e[y = e [y —2(key, ) we+ ke, || 3+

and thanks to the reproducing kernel property, we have explicitly:

i [t s (e 53




The varifold distance on unparametrized curves
We can now define for all ¢1, ¢ € Imm(St, RY):
V.
d"* (e, 2)? = |lpe, =t - = e v —2(ner, o) we e, Iy

and thanks to the reproducing kernel property, we have explicitly:

() )
o nahw = [ [ olle)-ex(@) ”<1( o) |c§(92)|>d1d2

e dV" is invariant to positive reparametrization and defines a
pseudo-distance on Imm(S!, R9)/ Diff(S?).

o If kpos is a cP-universal kernel and (1) > 0 then dV*" is a
distance on the space of embedded unparametrized curves
Emb(S!, R?)/ Diff T (S1).

e dV" is equivariant to rigid motions:
dVar(Rcl + b, Re, + b) = dVar(Cl’ C2).



The varifold distance on unparametrized curves
We can now define for all ¢1, ¢ € Imm(St, RY):
V.
d"* (e, 2)? = |lpe, =t - = e v —2(ner, o) we e, Iy

and thanks to the reproducing kernel property, we have explicitly:

() )
o nahw = [ [ olle)-ex(@) ”<1( o) |c§(92)|>d1d2

e dV" is invariant to 2ll reparametrization and defines a
pseudo-distance on Imm(S!, R9)/ Diff(S?!)

o If kpos is a cO-universal kernel, (1) > 0 then
dVe" is a distance on the space of embedded unparametrized
curves Emb(St, R9)/ Diff(S!).

e dV" is equivariant to rigid motions:
dVar(Rcl + b, Re, + b) = dVar(Cl’ C2).



Matching algorithm



A relaxed variational problem

Geodesics are the minimizers of the energy functional

1
E(c) = /0 Ge(et,cr)dt, s.t. ¢(0)=c1,c(l) = .

We can compute the distance on shape space by minimizing

min E(c) s.t. c(0)=ci,d ™ (c(1),c) =0.

C

For simplicity we consider the relaxed functional

min  E(c) + AdV*"(c(1), @)?

c,c(0)=c

for fixed A. This should solve the problem as A — oo.



Discretization

We use B-splines in time (t) and space () of order n; and ny,

Ne Ny
c(t,0) Z Z i jBi(t)G(0
i=1 j=1
Advantages:
» Analytic expressions for derivatives are available.

» Can control global smoothness
B; € C™1([0,1]), G e cm=1([0,27]).

» The basis functions B;, C; have local support.
Drawbacks:

» Reparametrization (c, ) — c o ¢ does not preserve order of
B-spline.



Discretization - Varifold distance
We write ¢(1)(0) = J’-V:"l cn,,jGi(0) and o(0) =

with the derivatives:

Ng
=3 vy ClO). G0) = > &Cho)
j=1

j=1

M &G(0)

With w1 (0) = c(1)'(0)/1c(1)'(0)], u2(0) = 3(0)/[c2(0)]:

c(1), ©2)* = llpa llivs — 2y, e w+ + e -

s p(le(1)(61) = c(1)(62)*) (ur(61) - u1(62)) dspdss

S
_ 2/Sl /Slp |c(1)(01) — (92)\ Yy (u1(61) - u2(62)) dsyds,
+ /Sl /Sl p(|c2(01) — 2(82)1?)y (u2(61) - ua(62)) dsydsy

—~ o~

dVa r



Discretization - Varifold distance

d"*"(c(1), @) = llnallfv- — 20pa, Heo)w+ + [l -

// (1e(1)(01) = c(1)(82)2)y (1 (01) - 1 (62)) dsndsr — 2.

e No closed form expression for the integrals: these are
approximated using quadrature methods.

e Gradient w.r.t the (cp, j)j=1,...n, is computed by chain rule.

2
e In the experiments, we use p(s) = e o2 (Gaussian kernel),
7(s) = s? (Binet kernel).



The inexact matching functional

The discretized optimization problem becomes:

min E(c;) + AdV*"(c(1), 2)?

<ij



The inexact matching functional

The discretized optimization problem becomes:

min E(c;) + AdV*"(c(1), 2)?

<ij

v

Limited memory quasi-Newton method: L-BFGS (HANSO
library)

v

Initialization by constant path (c;;j = cp)

v

(Optional) Multi-grid and multiscale speed-up

v

We can also recover a rotation/translation invariant distance
by also optimizing over (R, b) € SO(d) x RY:

min E(c;) + AdV*"(c(1), Rea + b)?

Cij,R,b



Sobolev metrics on the shape space of closed curves
Varifold representations and metrics
Matching algorithm

Results
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A simple example

(’,
9

Parametrized H? Unparametrized H? Varifold H?



Influence of \

3 minimizers for A = 0.3,1 and 5. Target curve in blue.




Intrinsic vs extrinsic models

Self-intersections can appear in this model:
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Intrinsic vs extrinsic models

Self-intersections can appear in this model:



Intrinsic vs extrinsic models

Unlike with extrinsic deformation frameworks like LDDMM

U
)
y
)



Intrinsic vs extrinsic models

Var-LDDMM



Shape clustering
54 shapes from the Surrey fish database

o o e = P
e < ot = 3 O O
e (1 <TH gt Unaee D
e D A e O D
T T o s e o e D
T R o S o D)



Shape clustering

Spectral clustering based on the estimated pairwise H? distances:

C~ O-
T O~ P

D S L

Pt S (o e

= LTS

o e e <o
e e =R <o

= <o o=

e <=

- D D

oD DO D



Shape clustering

Spectral clustering based on the pairwise varifold metric (modulo
rigid motions):

= < < < L, e o Pt o
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Mosquito wings: PCA analysis
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Conclusions and outlook

» We have proposed a new mathematical and numerical
formulation of the distance/geodesic estimation problem for
Sobolev metrics on unparametrized curves.

» This allows to do non-linear statistical analysis on shape
spaces.

» The method is robust and decently fast.

Ongoing and future work

v

Extend the approach to other Riemannian metrics on curves.

v

The method is easier to generalize to surfaces.

v

Augmented Lagrangian method in the space of varifolds in
order to select A automatically.

Scale invariance.

v
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