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Outline
• Background: Cancer and genesis of this work
• The original motivating problem
• Controlling treatment
• Immunology of cancer

– The Immune System Targets Cancer
– Two Kinds of Immune Responses: Innate and Specific

• Extended model, include immune 
components

• Adding treatment
• Specific cancer: B-CLL
• Work in progress: Spatial tumor models

– Hybrid CA models
– 3D PDE models



What is Cancer?
• Cancer is a cellular 

disorder.
• There are several 

hundred types of cancer, 
but all have some general 
characteristics in 
common.

• It can begin with just one 
cell gone awry...

Thanks: cancer-info.com



Cancer: Uncontrolled Growth
• Cancer cells experience uncontrolled and 

disorganized growth.
• Cancer cells can divide “forever” but never 

differentiate (vs normal cell 50x limit)

Thanks:www.sciencemuseum.org.uk



• What: Simulation of tumor-immune dynamics:
• Provide low-cost prediction, explanation.

• Why: Dr. Wiseman’s MoM group
• Goals: 

• Math model with range of dynamics, ability to simulate real 
laboratory and clinical data.  

• Focus on immune-tumor interactions and treatment modeling.
• Process, Method and Analysis:

• Model with differential equations and cellular automata. 
• Choose/create functions with empirical/biological fit to existing 

experimental data. 

Our Mathematical Model:
What and Why
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• Why might a tumor grow when it is treated, and shrink 
when it is not?  That is, In the clinic, what causes 
asynchronous response to chemotherapy?

• Note: The 2 population models of the time did not 
answer this question…We needed to extend the models.

The first question we investigated…



Could competition for resources cause 
the asynchronous response?

• Develop a three then four population 
model (dePillis and Radunskaya, 2001, 
2003): include normal cell competition and
chemo

• Why: Gives more realistic response to 
chemotherapy treatments: allows for 
delayed response to chemotherapy



dE dt = s + ρET (a + T) − c1ET − d1E
dT dt = r1T(1− b1T) − c2ET − c3TN
dN dt = r2N(1− b2N) − c4TN

Three Population Mathematical Model

• Combine Effector (Immune), Tumor, 

Normal Cells

Note: There is always a tumor-free equilibrium at (s/d,0,1)

Stuff going in Stuff going outPopulation change in time



Analysis: Finding Null Surfaces

• Curved Surface:

• Planes
dE dt = 0 ⇒ E =

s(A + T)
c1T(A + T) + d1(A + T) − rT

dT dt = 0 ⇒ T = 0    or   T =
1
b1

−
c2

b1r1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ E −

c3

b1r1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ N

dN dt = 0 ⇒ N = 0   or   N =
1
b2

−
c4

b2r2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ T



Null Surfaces: Immune, Tumor, 
Normal cells



Analysis: Determining Stability of 
Equilibrium Points

• Linearize ODE’s about (eg, tumor-free) 
equilibrium point

• Solve for system eigenvalues:

λ1 = −d1 < 0                     Always Negative
λ2 = −r2 − c2 b2 < 0        Always Negative
λ3 = r1 − c3s d1 − c2 b2    Positive or Negative



CoExisting Equilibria Map:            
Parameter Spaceρ − s



Cell Response to Chemotherapy
• To add drug response term to each DE, 

create new DE describing drug
Amount of cell kill for given amount of drug u:

F(u) = ai(1− e−ku)



• Four populations:

• Chemotherapy dose to treat tumor
• See: “A Mathematical Tumor Model with Immune Resistance and Drug 

Therapy: an Optimal Control Approach”, Journal of Theoretical Medicine, 2001

v(t)

Normal,Tumor & Immune 
Cells with  Chemotherapy

dE dt = s + rET (A + T) − c1ET − d1E − a1(1− e−u)E
dT dt = r1T(1− b1T) − c2ET − c3TN − a2(1− e−u)T
dN dt = r2N(1− b2N) − c4TN − a3(1− e−u)N
du dt = v(t) − d2u



Question Answered – Asynchronous 
(Delayed) Response happens with Immune 

System and Normal Cells
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• Four populations:

• Goal: control dose to minimize tumor
• See: “A Mathematical Tumor Model with Immune Resistance and 

Drug Therapy: an Optimal Control Approach”, Journal of Theoretical 
Medicine, 2001

Second Question: Can we find a 
better  chemotherapy schedule?

dE dt = s + rET (A + T) − c1ET − d1E − a1(1− e−u)E
dT dt = r1T(1− b1T) − c2ET − c3TN − a2(1− e−u)T
dN dt = r2N(1− b2N) − c4TN − a3(1− e−u)N
du dt = v(t) − d2u

v(t)



•Objective function options:
•Minimize a combination of total tumor and final tumor burden.

•Minimize amount of drug given, maximize the number of 
effector cells.

•Constraint options:
•Always keep circulating lymphocytes above a given threshold.
•Treat only when circulating lymphocytes are above a 
threshold.
•Fix total amount of drug given.

(Experiment with different options …)

Optimal Control: Therapy Design
provides a theoretical framework to solve the problem: maximize or minimize 

X (objective) while making sure that Y is … (constraint)



Basic Optimal Control Problem:
• Let (Effector,Tumor,Normal)=
• Find control variable v(t) that minimizes 

objective functional

• subject to state equations with IC’s

• and inequality constraint

This problem admits Bang-Bang solutions (on or off)

J[x,v] = K1 ⋅ x2(t f ) + K2 ⋅ x2(t) dt
t0

t f

∫

dx dt = f (x(t),v(t), t), x(t0) = x0

g(x(t),v(t)) = x3(t) − .75 ≥ 0 t ∈[t0,t f ]

x = (x1, x2, x3)



Basic Optimal Control Solution
• Pontryagin’s Max/Min Theorem: If 

Hamiltonian H is

• where             only when
• is the integrand of the objective J
• then v(t) is a candidate for a max/min of J

if we can find co-state variables p
satisfying

• and v(t) is such that

H = θ + (pT ⋅ f ) + ηg
η(t) > 0 g(x(t),v(t)) = 0

θ

dpi

dt
= −

∂H
∂xi

, pi(t f ) = ∂J ∂xi |t f

∂H ∂v = 0



Bang-Bang Solutions



Optimal Control Solutions



Tumor Growth - No Medication

E(0) = 0.1E(0) = 0.15



I(0) = 0.15 I(0) = 0.1

Tumor Growth - Pulsed Chemo



I(0) = 0.15 I(0) = 0.1

Tumor Growth - Optimal Control 
Chemo



Tumor Growth - Optimal Control Chemotherapy

Current work: New models 
with quadratic and linear
Optimal control: Analysis



Tumor Growth - Optimal Control Chemotherapy
Single Quadratic Control: No Singularities

• T(t), tumor cells
• N(t), natural killer 

effector cells
• C(t), circulating 

lymphocytes
• M(t), chemotherapy in 

patient
• v_M(t), chemotherapy 

drug dose

J(VM ) = T(t) + εM VM
2 (t)( )

0

t f

∫ dt



Tumor Growth - Optimal Control Chemotherapy
Single Quadratic Control: No Singularities

J(VM ) = T(t) + εM VM
2 (t)( )

0

t f

∫ dt



Tumor Growth – Single Linear Optimal 
Control of Chemotherapy

Determining Singular Regions

J = (T(t) + εM VM (t)( )
0

t f

∫ dt



Tumor Growth – Single Linear Optimal 
Control of Chemotherapy

J = (T(t) + εM VM (t)( )
0

t f

∫ dt J = T(t)
0

t f

∫ dt, Constraint: N>0.1N(0)
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The next question:

• What role can immunotherapy and 
vaccine therapy play in cancer 
treatment?



Cancer Immunology in the News



Treatment: Day 0 - Anti CD-3 10-75 mcg iv/60 min
Day 1 - Cyclophosphamide 300 mg/m^2
Day 28 - Re-evaluate, MRI, re-treat

Immunotherpay: Clinical Response to Anti-CD3
Cancer Immunotherapy



VACCINES and IMMUNOTHERAPY
•Immunotherapy boosts immune resistance with 
biological response modifiers
•Vaccine Therapy (special case) boosts immune 
resistance with modified tumor challenge
•Use: Vaccines used mainly therapeutically, not 
yet preventatively.
•Sometimes Only Option: When chemo won’t 
work. Certain cancers good candidates, eg, 
melanoma,glioma
•Benefits: Low toxicity, potentially high efficacy



Thanks: National Cancer Institute

Immune System Targets Cancer



Experimental Data: Basis for ODE Models
Mouse Data: Basis for Preliminary Vaccine
Therapy in Model.
The Diefenbach et al.[2] study

Human Data: Basis for Immunotherapy in Model:
The Rosenberg et al. [4] study

Data Evidence



Diefenbach mouse trials with various vaccination strategies.

Mouse Lab Data: Preventative 
Vaccination

Mice “vaccinated” with 

ligand transduced cells, 

then rechallenged with 

control-transduced cells, 

were proteced.
reprinted from Nature, 2001;41:165-171



Diefenbach mouse trials with varying tumor challenge levels.

Mouse Lab Data:
CD8 vs NK Protection

Black circles:
RMA-Rae1b

Ligand Transduced Cells

reprinted from Nature, 2001;41:165-171



How the Immune System 
Works

• Huge army of “defender 
cells”: White Blood Cells

• Body creates about 1000 
million per day

• Natural Immunity: Regular 
Patrols (“Secret 
handshake”)

• Specific Immunity:
Activated After Invasion 
(“Glove sniffing dog”)

Coloured electron micrograph of a white blood cell.
National Medical Slide Bank/Wellcome Photo Library



The Immune System

Thanks: The Biology Project



NK Cell Killing Cancer Cell 
Aspects of Tumor Immune Response: NK cells

Thanks: http://mediafreaks.com

Thanks: http://www.media-freaks.com/casestudies/eexcel_cdrom/

NKs
recognize
self (MHC-I 
expressed)

Down-reg
of MHC-I 
(as with 
certain 
cancer 
cells) 
allows NK-
tumor lysis



Innate Immune Response to Cancer 
(Natural Killer Cell = NK)

NK recognizes “self” and attacks “non-self”
(the cancer): Secret Handshake



Specific Immune Response to 
Cancer

• T-cell (CTL, CD8+T-cell) recognizes and 
attacks cancer:  “Glove Sniffing Dog”



T-cell Attacking Cancer-cell 
Movie

Thanks: CellsAlive.com

QuickTime™ and a
Video decompressor

are needed to see this picture.



T-Cells Killing a Cancer Cell
• Before

A fully intact cancer cell 
surrounded by the immune 
system’s killer T-cells. Notice 
the tentacles of the cancer cell.

• After 
The cancer cell is 
completely flattened and 
totally destroyed.

Thanks: cancer-info.com
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New Mathematical 
Model Components
Cell Populations:
•Tumor Cells:T(t). 

•Natural Killer (NK) Cells: N(t).
Nonspecific. Always present, 
stimulated by the presence of tumor 
cells. 

•CD8+T Cells: L(t). Specific. 
Cytolytic activity and cell 
proliferation are increased by  the 
presence of tumor cells. Image courtesy  

http://www.wellesley.edu/Chemistry/Chem101/antibiotics/immune.html

Image courtesy  http://www.immuneresources.com/cancer.htm



Mathematical Model Flow Diagram

R = Recruitment
I   = Inactivation
F  = Fractional Cell Kill



cNT=cellsNK-by  Lysis CellTarget  of Rate

Tumor Cell Lysis by NK-Cells: Fit to Mouse Data

Mathematically Modeling the Innate Immune 
(Secret Handshake) Killing of Cancer Cells



Tumor Cell Lysis by CD8+T-Cells: Fit to Mouse Data
Conventional vs DePillis-Rad Laws

Ligand-Transduced Cancer Cells

Mathematically Modeling the Specific 
(Glove Sniffing) Killing of Cancer Cells:

New “de Pillis-Radunskaya Law”

T
TLs

TLd ν

ν

)/(
)/(

:cells-Tby  Lysis
 CellTarget  of Rate

+



T
TLs

TLd ν

ν

)/(
)/(cells-Tby  Lysis CellTarget  of Rate 

+
=

NEW DE PILLIS-RAD LAW also applies to 
HUMAN DATA:

Specific (Glove Sniffing) Killing of Cancer Cells
Follows New Mathematical Law

De Pillis-Radunskaya Law

Tumor Cell Lysis by CD8+T-Cells: Validated with Human Data



More Good Fit Evidence: Fit to Other Mouse Data
Data from Antoni Ribas, UCLA, fit to raw chromium release assay data.



Elements in Mathematical Model Equations

( )
T

s
D

qLTL
Dk

DjmL
dt
dL

pNTN
Th

TgfNe
dt
dN

dDcNTbT)aT(1
dt
dT

l
T

L

2

2

2

2

+
=

−
+

+−=

−
+

+−=

−−−=

Where ( ) l
T

L

Logistic Growth

NK-Tumor Kill:
Power Law
CD8-Tumor Kill:
Rational Law
Immune Recruitment:
Michaelis-Menten
Kinetics



•Questions:
•How do simulation outcomes vary 
as the parameters are varied?

•Which parameters are the best 
predictors of successful outcomes?

•One Answer: 
•Need Sensitivity Analysis

Are Some Parameters More 
Important than Others?



Model Simulations: Traditional Sensitivity Analysis
one parameter is changed at a time

Simulation parameters: human, no chemo



Uncertainty Analysis: Latin Hypercube Sampling
all parameters are varied simultaneously

[3] S.M. Blower and H. Dowlatabadi,
“Sensitivity and Uncertainty Analysis of Complex Models of Disease 
Transmission: an HIV Model, as an Example. 
International Statistical Review (1994), 62,2,pp.229-243.

Sensitivity Analysis (LHS)
Method: Latin Hypercube Sampling (LHS) [3].

Outcome: the uncertainty in the predicted tumor 
size grows over time.  

Details: 10,000 sample parameter sets were 
randomly selected in a range centered around 
the estimated values, and each parameter was 
varied independently over its own range. Median 
tumor size over time is depicted by the solid 
blue line. Upper and lower quartiles are shown 
by green lines.  Full range of outcomes given by 
red bars.

Comment: While the uncertainty in the prediction 
grows over time, it is clear that the distribution of 
tumor sizes is not uniform, but rather is 
concentrated at the lower tumor levels.

Simulation parameters: human, no chemo, 5% range or reported ranges, 

truncated normal distribution



Model Simulations: Latin Hypercube Sampling
PRCC Results
• PRCCs (partially ranked correlation coefficients): measure outcome's sensitivity to each parameter. Bar graph: 
Relative ranking of the six most sensitive parameters with respect to tumor size.

• Parameters d and eL: represent overall tumor-cell lysis rate and the strength of the immune-tumor interaction, 
respectively. Both can be estimated from patient data, as in this example. Parameter a represents tumor growth rate 

• Predictions: Tumor aggressiveness as well as patient specific immune strength may predict  patient response to 
immunotherapy treatment.

Significance w/ Student’s T: 

P-values all less than 
0.00001



Validation: Simulating Vaccine in Mouse Model

Validation: These In Silico Experiments Mirror In Vivo Mouse Experiments

See: dePillis et al, Cancer Res, 65(17), 2005 
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Experimenting with Treatments

• Must Extend the Model to Examine:
– Chemo Alone
– Immunotherapy Alone
– Combined Therapy

• To Simulate Dudley’s Human Data
• Add IL-2 immunotherapy
• Add Circulating Lymphocytes to track 

“health”



Multi-Population Model Schematic



Parameters 
a, b, c, d, s,  
and eL were 
fit from 
published 
experimental 
data.  All 
other 
parameters 
were 
estimated or 
taken from 
the literature.

Circulating lymphocytes

Rate of drug administration and decay

No IL2

IL-2 boost

System of Model Equations: 
Additional Treatments Possible

See dePillis et al, J. Theor. Biol., 2005 



Bifurcation diagram: the effect of varying the 
NK-kill rate, c.

See dePillis et al, J. Theor. Biol., 2005 



Sensitivity to Initial Conditions after 
Bifurcation Point. C*=0.9763

Sensitive to ICs
after 
bifurcation

Before
bif, 0 
unstable

After bif,
0 stable   

See dePillis et al, J. Theor. Biol., 2005 



Mixed Therapy - Mouse Params

No treatment Pulsed Chemo

TIL treatment TIL with Pulsed Chemo



Mixed Therapy - Human Params

Top left: Pulsed chemo fails on 10^6 tumor (healthy immune).  
Top right: TIL and IL2 fail.  Middle left and right: Combo therapy kills tumor. 
(Right has more aggressive immunotherapy)



•Stable Zero Tumor Equilibrium:
•Immune system keeps tumor under control

•Stable High Tumor Equilibrium: 
•Immune system too weak to control tumor

•Unstable Intermediate Tumor Equilibrium:
•System wants to move toward high or zero

Bifurcation Analysis: Basins of Attraction
(ODE model with IL-2)



Basin of Attraction of zero-tumor and
high-tumor equilibria

See dePillis et al, J. Theor. Biol., 2005



Bifurcation Analysis: Basins of Attraction
The barrier separates 
system-states which evolve 
toward the low-tumor 
equilibrium from those 
which evolve toward the 
high tumor state.

With Immunotherapy

With 
Chemotherapy

No therapy

This barrier moves 
with therapy
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B-CLL model:
A work in progress…



Image: http://www.vimm.it/research/images/semenzato_fig1.jpg

B-Cell Chronic Lymphocytic 
Leukemia (B-CLL)

• Fuzzy characterization: over 5K cells / μ-liter 
one measure

• Precise cause unknown
• No cure
• High proliferation rate more serious than high 

numbers of cells
• NK cells, helper T cells and cytotoxic T cells 

may all play a role in stemming the growth of 
B-CLL

• B-CLL: Cancer of the immune system. Characterized by the  accumulation of 
large numbers of white blood cells (B cells) in the blood, bone marrow, spleen 
and lymph nodes.

• Current understanding: B-CLL cells derive from mature antigen-stimulated B-
cells that are immunologically competent.

Subcellular localization of HS1 analyzed by confocal microscopy. 
HS1 is uniformly distribuited in the cytosol of normal B cells, 
while it shows a nuclear spotting distribution in B-CLL cells.



Example Model Equations

s
B

kaT
dt
dT

dBNBNbB +(r-dB)B
dt
dB

L

+
+=

−−

 α

= dBTBT

dNBNBbN
dt
dN

−= dNN−

Growth or Source
Death

Immune Cell Killing
Immune Recruitment

− dTT dTBTB−
B L TH

p

s
B

aT
dt

dTH
L

+
+= − dTHTH

B L TH
p

bTH



Parameter Choice: bB
• Represents: B-CLL creation

– A fraction of antigenically experieced immunologically 
competent B cells.

– A constant source of newly mutated cells.
• Units: cells/μL per day
• Numerical value(s) used: 70 (range: [10,80])
• Source: Numerical Bifurcation Study

Unstable

Stable



Numerical Simulations

bB=68 bB=100

Bifurcation at bB = 70Unstable

Stable



Numerical Simulations

Solution at Steady State Sudden Immune Depletion

dBNBNbB +(r-dB)B
dt
dB

−−= dBTBT



* Messmer et al., J. Clin. Invest. 2005r range:[0.0011,0.0176], mean:0.004636
dB range:[-3.9e-3,2.14e-2]

Fitting for parameters (-r+dB)
Patients 331 &360*



Treatment Possibilities: 
• Keating (2003) suggests:
Chemotherapy, Single and Combination

alkylating agent

purine analog

Combination therapies



Combination 
Therapy: 

Fludarabine 
& Rituximab

Making it tougher:
bB=.5%, leukemic 
cell doubling time 
205 days, 50%
fludarabine resistant 
cells, low CD20 
expression



Fludarabine vs Rituximab
Rituximab



Combination Therapy

Concurrent 
treatment best:
93% lysis, killed 
87700 
cells/microliter 
of blood. Still 
below pre-
treatment levels 
after 5 years.
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Deterministic & Probabilistic:2D and 3D

Image Courtesy http://www.ssainc.net/images/melanoma_pics.GIF

http://www.lbah.com/Rats/rat_mammary_tumor.htm

http://www.lbah.com/Rats/ovarian_tumor.htm

http://www.loni.ucla.edu/~thompson/HBM2000/sean_SNO2000abs.html

Spatial Tumor Growth



Goals for Spatial Modeling
• To model:

– Nutrient dependent tumor growth in 2D
– Immune system dynamics

• To explore:
– Effects of the immune response
– Effects of tumor “gluttony”
– Effects of tumor adhesivity
– Dynamic Energy Budget concept (DEB)
– Effects of microenvironment

• Build from:
– Immunology literature, ODE concepts



Approach: hybrid cellular automata

• Laws of evolution are written as partial 
differential equations or discrete rules, 
either stochastic or deterministic.

• Typically, all rules are eventually 
discretized for numerical solution.

• Inherent in these models: two time 
scales, one for the (fast) diffusion of small 
molecules, one for the evolution of cell 
populations.



o Include Tumor cells (living and necrotic), Immune cells 
(NK and CTL), and normal Host cells.

o Two types of nutrients: one for Maintenance and one 
necessary for cell division (N).

o Nutrients diffuse from a (constant) source: blood vessels 
at the upper and lower edge of the computational 
domain and are consumed by living cells.

o NK cells are constantly replenished in order to maintain 
relatively constant population.

o CTLs are recruited when tumor cells are lysed or 
recognized by the immune system.

o Tumor cells die, proliferate and migrate, affected by local 
nutrient concentrations.

In Particular…



Cellular automata - the idea…
• DePillis/Mallet/Radunskaya models 

work w/ 2d, but can also be 3d
• Grid of elements where cells can be 

located
• Discrete time steps, cells:

• Move
• Divide
• Interact
• Die
• Signal
• Consume nutrients
• etc

T

Tmr

NK

Natural/regular
host cells

NK



Model I
• Hybrid PDE/CA model
• 2D spatial domain
• Nutrient

sources
• Initial cell scattering
• Stochastic cell rules
• Explore: Effect of varying 

nutrient consumption rates



Nondimensional Nutrient PDEs 

• N: nutrients required for proliferation
• M: nutrients required for survival
• H: host cells
• T: tumor cells
• NK: NK immune cells
• L: CD8+T lymphocytes

Dimensionless rate of consumption Tumor excess consumption factor



Cell rules
• Evolution: according to probabilistic rules
• All cells: consume nutrients
• Tumor cells: move, divide, die (from 

insufficient nutrient, or from immune cell 
attack)

• NK cells: move randomly, kill tumor, induce 
CTL recruitment; one tumor cell kill allowed.

• CTL cells: move preferentially toward tumor, 
kill tumor, induce further CTL recruitment; 
multiple tumor cell kills allowed.



Spherical Growth: Lower 
nutrient consumption rates

• No immune system…exp./lin. tumour growth



Papillary growth: Higher 
nutrient consumption rates



Spatial Tumor Growth: one nutrient, one blood vessel
•Nutrients diffuse from blood vessel (at top) in a continuous model (PDE).
•Cells proliferate according to a probabilistic model based on available nutrients.

λ

α

Cancer to normal cell consumption factor

Normal & cancer cell 
consumption 

coefficient 

A blood vessel 
runs along the 
top of each 
square

Papillary versus Spherical



Spatial Tumor Growth
•Chemotherapy Experiments: Every Three Weeks

Spatial Features: Add Chemo



Spatial Tumor Growth
•Chemotherapy Experiments: Every Two Weeks

Spatial Features: Add Chemo



• High recruitment

• Low recruitment

Effects of CTL
Recruitment to 

Tumour locations

Add CTL recruitment to tumor



Spatial Tumor Growth
•NK and CD8 Immune Activity

Thanks: Dann Mallet

Simulation 2: TumorSimulation 1: Tumor

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.



Immune cell infiltration: 
Qualitative agreement with 

biological experiment

Ovarian carcinoma. Tumor cells (blue) 
infiltrated by immune cells (gray). 
Thanks: Zhang et al 2003

Simulation. Tumor cells (white) 
infiltrated by immune cells (black).

Mallet & de Pillis JTB 239, 2006



Radiation Treatment: in progress
o Goal of radiation: create enough DNA 

double-strand breaks to cause cell 
death.

o Standard model: Linear Quadratic (LQ)

o LQ-modified with oxygenation effect -
hypoxic cells less vulnerable to radiation: 
Need OER (oxygen enhancement ratio):
standard is 2.5 to 3



Radiation Treatment

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

50x50 grid.  Cycles 80 to 140. Radiation: Alternate
Days (cycles 100-120), 3 Grays per dose.

No treatment Radiation cycles 100-120



• The three cell types within the model are:
– proliferating cells: alive, can divide and grow
– quiescent cells: alive, but dormant
– necrotic cells: dead

HMC Mathematics Clinic: 5 Undergraduates 
and LANL

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang.  Faculty Supervisor: L.G. de Pillis



• Grid site 

• Tumor cell

Simulated Model Cross-Section

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang.  Faculty Supervisor: L.G. de Pillis



Cell Types Growth Factor Concentration

Matlab Imaging – 2D Slices 

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang.  Faculty Supervisor: L.G. de Pillis

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.



Linear Vasculature - Tumor Growth 

2D slice taken over several time steps

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang.  Faculty Supervisor: L.G. de Pillis



Lattice Vasculature – Tumor Growth: 2D 
Slice of 3D Computation

Series of fixed-depth 2D slices taken over several time steps

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang.  Faculty Supervisor: L.G. de Pillis



Hex Lattice Vasculature –
Tumor Growth

2D slice taken over several time steps

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang.  Faculty Supervisor: L.G. de Pillis



3D Vasculature – Fly-Through 

Series of fixed-depth 2D slices taken over several time steps

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang.  Faculty Supervisor: L.G. de Pillis

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.



Chemotherapy Treatments
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Chemotherapy Treatments
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Chemotherapy Treatments

No Treatment

0                            Grid Sites                     200

G
rid

 S
ite

s 
   

   
   

   
   

   
   

   
 2

00

0                            Grid Sites                     200

G
rid

 S
ite

s 
   

   
   

   
   

   
   

   
 2

00

0                            Grid Sites                     200

G
rid

 S
ite

s 
   

   
   

   
   

   
   

   
 2

00

Low Dose 
Chemotherapy

High Dose 
Chemotherapy

60 MCS

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang.  Faculty Supervisor: L.G. de Pillis

Red: Quiescent; Dark Yellow: Proliferating; Blue: Apoptotic;
Light yellow: Nutrient Medium; Light Blue Line: Blood Vessel



3D Tumor Growth
Hybrid ODE-PDE Approach

with
Spherical Harmonics



Spherical Harmonics to Model 
3D Tumor Growth

• Use knowledge from ODE models
• Incorporate spatial components to allow 

visualization of 3D tumor
• Spherical harmonics: Motivated by

medical imaging techniques



ODE/PDE Equations



PDE Types in Problem



Truncated Spherical 
Coordinates



Evolving Tumor Simulations

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.



Thoughts on Modeling
• “All models are wrong…some are useful”, Box 

and Draper, 1987
• “All decisions are based on models…and all 

models are wrong”, Sterman, 2002
• “Although knowledge is incomplete, nonetheless 

decisions have to be made.  Modeling…takes 
place in the effort to plan clinical trials or 
understand their results.  Formal modeling 
should improve that effort, but cautious 
consideration of the assumptions is demanded”, 
Day, Shackness and Peters, 2005



• The more we cooperate, the more rapid 
progress we can make.

• The more we cooperate, the more 
interesting problems we can solve.

• The more we cooperate, the more 
relevant our contributions.

Final Thoughts on Cooperation
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