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What Is Cancer?

e Canceris a cellular
disorder.

 There are several
hundred types of cancer,
but all have some general
characteristics in

common.

It can begin with just one
cell gone awry...

Thanks: cancer-info.com



Cancer: Uncontrolled Growth

e Cancer cells experience uncontrolled and
disorganized growth.

e Cancer cells can divide “forever” but never
differentiate (vs normal cell 50x limit)

Thanks:www.sciencemuseum.ora.uk



Our Mathematical Model:
What and Why

What: Simulation of tumor-immune dynamics:
* Provide low-cost prediction, explanation.

Why: Dr. Wiseman’s MoM group

Goals:

« Math model with range of dynamics, ability to simulate real
laboratory and clinical data.

e Focus on immune-tumor interactions and treatment modeling.
Process, Method and Analysis:

« Model with differential equations and cellular automata.

» Choose/create functions with empirical/biological fit to existing
experimental data.
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The first question we investigated...

 Why might a tumor grow when it is treated, and shrink
when it is not? Thatis, In the clinic, what causes
asynchronous response to chemotherapy?
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« Note: The 2 population models of the time did not
answer this question...We needed to extend the models.



Could competition for resources cause
the asynchronous response?

* Develop a three then four population
model (dePillis and Radunskaya, 2001,
2003): include normal cell competition and
chemo

e Why: Gives more realistic response to
chemotherapy treatments: allows for
delayed response to chemotherapy



Three Population Mathematical Model

‘Population change in time “ Stuff going in “ Stuff going out ‘

 Combine Effector (Immune), Tumor,

Normal C
dE/dt =f§|i PET /(a+T)Hc,ET - d,E]

dT/dt =[rT(1—b,T)—Cc,ET —c,TN]
dN/dt|=[,N@-{b,N) —c,TN |

Note: There Is always a tumor-free equilibrium at (s/d,0,1)




Analysis: Finding Null Surfaces

e Curved Surface:

dE/dt=0= E = S(A+T)

CT(A+T)+d(A+T)—1rT

dT/dt=0=T=0 or T:i_(ijE_(&jN

b, \bn b1,

1 C,
dN/dt:O:N:O or N:—— —T

b, b,r,



Null Surfaces: Immune, Tumor,
Normal cells

Inmmune Cell Mul-Suface: dx1fdt =10 TurnorCel and Monmal Cell NuB-Surfac es
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Analysis: Determining Stabllity of
Equilibrium Points

e Linearize ODE’s about (eg, tumor-free)
equilibrium point

« Solve for system eigenvalues:
A, =—d, <0 Always Negative
A,=-1,—¢,/b, <0 Always Negative
A, =1 —c.;s/d, —c,/b, Positive or Negative



CoExisting Equilibria Map
P—S Parameter Space
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Cell Response to Chemotherapy

e To add drug response term to each DE,
create new DE describing drug

Amount of cell kill for given amount of drug u:

F(u)=al-e™)

Drug response curve




Normal, Tumor & Immune
Cells with Chemotherapy

* Four populations:

dE/dt=s+rET/(A+T)-c,ET-dE—-a(l-¢e")E
dT/dt=rT(1-bT)-c,ET-c,IN—-a,(1-e )T
dN/dt=r,N(1-b,N)-c,TN—a,(1—e™)N

du/dt =v(t)—d,u

« Chemotherapy dose V()| to treat tumor

e See: ¢

, 2001



Question Answered — Asynchronous
(Delayed) Response happens with Immune
System and Normal Cells

Tumor progression with puksad treatmant evary 20 days
i T " L £

= Pt oy
b e L
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Second Question: Can we find a

better chemotherapy schedule?
e Four populations:

dE/dt=s+rET/(A+T)-c,ET-dE-a(1—-e")E
dT/dt=rT(1-bT)-Cc,ET—c,TN—-a,(1-e )T
dN/dt=r,N@1-b,N)-c,TN - a,(1-e )N

du/dt =@ d,u

e Goal: control dose @ to minimize tumor

e See: “A Mathematical Tumor Model with Immune Resistance and

Drug Therapy: an Optimal Control Approach”,
, 2001




Optimal Control: Therapy Design

provides a theoretical framework to solve the problem: maximize or minimize
X (objective) while making sure that Y is ... (constraint)

*Objective function options:
Minimize a combination of total tumor and final tumor burden.

*Minimize amount of drug given, maximize the number of
effector cells.

eConstraint options:
*Always keep circulating lymphocytes above a given threshold.

*Treat only when circulating lymphocytes are above a
threshold.

Fix total amount of drug given.

(Experiment with different options ...)



Basic Optimal Control Problem:
o Let (Effector,Tumor,Normal)= X = (XX, X;)

e Find control variable v(t) that minimizes

objective functional t
Jx,v] =K, x,(t;)+ K, - JL X, (t)dt

e Subject to state equationst,o with IC’s
dx/dt = f(x(t),v(t),1), X(t,) = X,

e and inequality constraint
g(x(t),v(t)) = x,(t)-.75>0  telt,t]

This problem admits Bang-Bang solutions (on or off)




Basic Optimal Control Solution

e Pontryagin’s Max/Min Theorem: If
Hamiltonian H Is

H=0+(p" - f)+mn
» where 77(t) > Oonly when g(x(t),v(t))=0
e @ is the integrand of the objective J

* then v(t) Is a candidate for a max/min of J
If we can find co-state variables p

satisfyincgly

P. oH

— = (t.)=0d/0ox.
W o M=,

» and|v(t) is such that oH/ov =0




H=Hamiltonian

Bang-Bang Solutions
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Imal Control Solutions
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Tumor Growth - No Medication

ho CGhemotherapy: Logistic Growth to Chemothermny: LogisticGrawth
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Fumbar of Salls

Tumor Growth -

Traditiora| pulsed chemathe mpy: Logistic Growth
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Tumor Growth - Optimal Control Chemotherapy

Current work: New models
with quadratic and linear
Optimal control: Analysis



Tumor Growth - Optimal Control Chemotherapy
Single Quadratic Control: No Singularities

o T(1), tumor cells

e N(t), natural killer
effector cells

e C(1), circulating

t

lymphocytes IV, = T+, (V3 ()t
* M(t), chemotherapy In 0
patient

e v_M(1), chemotherapy
drug dose



Tumor Growth - Optimal Control Chemotherapy
Single Quadratic Control: No Singularities

- Simple Case with Quadratic Medicine Control
E 0.8 FT T T T T T T T T T =
B Kk : )
g 1}
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Fig. 1. OQuadratic control sitnation. This is a 100 day view of optimal chemotherapy treatment for 365 days. One can
sec that the largest dose of (normmalized) chemotherapy is administered at the beginning of the time period, and then is
lowered to a small but non-zero and very slowly decreasing level for the remainder of the treatment period. The tumeor is
driven to near-zero, while the populations of immune cells are rising. Initial tumor size is 1 > 107 cells. Initial natural
killer cell level is 3 = 10° and initial circulating lymphocyte level is 6.25 > 10'%,

IVy) =) T()+ 4, (V2 () dt

0



Tumor Growth — Single Linear Optimal
Control of Chemotherapy

Determining Singular Regions

| J= j (T(t) + &y (v, (1) )t




Tumor Growth — Single Linear Optimal
Control of Chemotherapy

Simple Case with Linear Medicine Control
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Fig. 3. These graphs represent the states and control for the linear case. There is an initial burst of chemotherapy at the
start of the treatment period, after which the medicine is completely shut off and is never again turned on. The tumor is
driven to a very low but non-zero level, while the immune cell populations increase over time. Initial tumor size is
1 %107 cells. Initial natural killer cell level is 3 x 10° and initial circulating lymphocyte level is 6.25 x 10'°,

J= j (T(t) + &, (v (1))t
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Simple Case with Natural Killer Call
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Fig. 5. Inthis run, the only value minimized was the tumor size. Additionally, the natural killer cells were required to be
kept above 10% of their initial value and final time was not fixed. Miser chose 35.62 days to run this simulation. The
medicine starts high and then lowers and adjusts to keep the natural killer cells at the appropriate level. Initial tumor
size is 1% 107cells. Initial natural killer cell level is 3 x 107 and initial circulating lymphocyte level is 6.25 x 10°.
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The next gquestion:

 \What role can immunotherapy and
vaccine therapy play in cancer
treatment?



Cancer Immunology In the News
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ScienceDaily (Sep. 27, 2008) — Orepon Health & Science 7 Institute researchers have
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Cancer Immunotherapy Reduces Risk Of Relapse After Surgery,
Study Shows

Researchers thefrselecled a i ScienceDaily (Apr. 26, 2008) — New, long-term Ads by Gaogle Adveriise e

with the immune response ge} o N
St by By itk i) results from a clinical trial presented today at the

o Immunotherapy Treatments
1st European Lung Cancer Conference jointly Leam about immunotherapy freatment by chatting
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‘Cancer vaccines’ offer new way to fight disease

Treatment using immune system to battle 3 types of cancer shows promise

The Associated Press
updated 11:33 a.m. PT, Sun., May 31, 2009

ORLANDO, Fla. - First there was surgery, then chemotherapy and radiation. Now, doctors have overcome 30 years of false starts and found
success with a fourth way to fight cancer: using the body's natural defender, the immune system.

The approach is called a cancer vaccing, although it treats the disease rather than prevents it,

At a cancer conference Sunday, researchers said one such vaccine kept a common form of lymphoma from worsening for more than a year.
That's huge in this field, where progress is glacial and success with a new treatment is often measured in weeks or even days.

Jay L. Clendenin / Los Angeles Times
rs ago, a vaccine designed specifically for musician Kevin Carlberg, shown with his daughter,
hirm beat back an aggressive type of brain cancer.

Experimental vaccines against three other cancers — prostate, the deadly skin disease melanoma and an often fatal childheod tumor called
neuroblastoma = also gave positive results in late-stage testing in recent weeks, after decades of struggles in the lab.

o ) ) . _ hg a therapy derived from the genetic information of a person's cancer is

"I don’t know what we did differently te make the breakthrough,” said Dr. Len Lichtenfeld of the American Cancer Scciety. g to change today's standard medical approach — and may help bring on a cure.

Instead of a single "A-Ha!" moment, there have been many “ah, so” discoveries about the immune system that now seem to be paying off,
said Dr. John Niederhuber, director of the Mational Cancer Institute.




Cancer Immunotherapy

Immunotherpay: Clinical Response to Anti-CD3

Treatment: Day 0 - Anti CD-3 10-75 mcg iv/60 min
Day 1 - Cyclophosphamide 300 mg/m”2
Day 28 - Re-evaluate, MRI, re-treat

[CANCER RESEARCH $1, 2127-2132, April 15, 1991]

Antitumor Effects of Interleukin 2 Liposomes and Anti-CD3-Stimulated T-Cells AS( (v)}) American Society of Clinical Oncology
against Murine MCA-38 Hepatic Metastasis'

Cynthia M. Loeffler,? Jeffrey L. Platt, Peter M. Anderson, Emmanuel Katsanis, Juan B, Ochoa, Walter J. Urba,

www.asco.org

Dan L. Longo, Arnold S. Leonard, and Augusto C. Ochoa Salvage Monoclonal Antibody Therapy for Primary Brain Tumors.
of Surgery (C. M. L. . S. L], and Pediatrics 1. L. P..P. M. A.. E. K.}, University of Mis of Surge i
Untversy of Hiashurgn, Pisbursh. Pesmsvnia 15361 3. 8 O oratoy, otram Resource, T [C. . £ W, J. U, 4. C. O and Bioiogeat | SUD-category:
Response Modifiers Program [D. L. L.], National Cancer Institute-Frederick Cancer kmrrl uuu‘&rviapmw(‘ml\-r Frederick, Maryland 21702 Category: Central Nervous System Tikiicis
ABSTRACT spleen (4). Several subpopulations of lymphocytes develop LAK | Meeting: 2000 ASCO Annual Meeting
. . N activity, depending on the specific signals used to activate the
The of murine tes with the

anti-CD3 and interleukin 2 (1L-2) results in the provacation of larce  C1S, 1€ addition of IL-2 alone generates cells with Iytic




VACCINES and IMMUNOTHERAPY

I/mmunotherapy boosts Immune resistance with
biological response modifiers

*\VVaccine Therapy (special case) boosts immune
resistance with modified tumor challenge

*Use: Vaccines used mainly therapeutically, not
yet preventatively.

Sometimes Only Option: When chemo won't
work. Certain cancers good candidates, eqg,
melanoma,glioma

‘Benefits: Low toxicity, potentially high efficacy



Immune System Targets Cancer

bbb

Thanks: National Cancer Institute



Data Evidence

Experimental Data: Basis for ODE Models

Mouse Data: Basis for Preliminary Vaccine

Therapy in Model.
The Diefenbach et al.[2] study

Human Data: Basis for Immunotherapy in Model:
The Rosenberg et al. [4] study




Mezn tumeoursu face (mme)

Mouse Lab Data: Preventative
Vaccination

Diefenbach mouse trials with various vaccination strategies.
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reprinted from Nature, 2001;41:165-171




Mean tumour surface (mmd)

Mouse Lab Data:

CD8 vs NK Pro

tection

Diefenbach mouse trials with varying tumor challenge levels.
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How the Immune System
Works

Huge army of “defender
cells”: White Blood Cells

Body creates about 1000
million per day

Natural Immunity: Regular
Patrols (“Secret
handshake”)

Specific Immunity:
Activated After Invasion
(“Glove sniffing dog”)

Coloured electron micrograph of a white blood cell.
National Medical Slide Bank/Wellcome Photo Library



The Immune System

/) T~

B Lymphacyte Flasma Gell
J’ m Gﬁl \
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Thanks: The Biology Project



NK Cell Killing Cancer Cell

Aspects of Tumor Immune Response: NK cells

NKs
recognize
self (MHC-I
expressed)

Down-reg
of MHC-I
(as with
certain
cancer
cells)
allows NK-
tumor lysis

Thanks: http://www.media-freaks.com/casestudies/eexcel_cdrom/



Innate Immune Response to Cancer
(Natural Killer Cell = NK)
NK recognizes “self” and attacks “non-self”
(the cancer):

expressing MHC- expressing MHC-I




Specific Immune Response to
Cancer

(CTL, CD8+T-cell) recognizes and
attacks cancer: “Glove Sniffing Dog”

&
® 2®
"l i
@




T-cell Attacking Cancer-cell
Movie

QuickTime™ and a
Video decompressor
are needed to see this picture.

Thanks: CellsAlive.com



T-Cells Killing a Cancer Cell

« Before o After
A fully intact cancer cell The cancer cell is
surrounded by the immune completely flattened and
system’s killer T-cells. Notice totally destroyed.

the tentacles of the cancer cell.

Thanks: cancer-info.com
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New Mathematical
Model Components

Cell Populations:
Tumor Cells:T(t).

Natural Killer (NK) Cells: N(t).

Nonspecific. Always present,
stimulated by the presence of tumor
cells.

CD8+T Cells: L(t). Specific.
Cytolytic activity and cell
proliferation are increased by the
presence of tumor cells.

Image courtesy
http://www.wellesley.edu/Chemistry/Chem101/antibiotics/immune.html



Mathematical Model Flow Diagram

S l mercll R = Recruitment
| = Inactivation
F = Fractional Cell Kill




Mathematically Modeling the
Killing of Cancer Cells

Rate of Target Cell Lysis by NK-cells =cNT

Lysis of RMA Cells by NK Cells:
Compare Ligand and Control Transduced Cells

45

40

3 | Prediction using lysis rate —cNT for ligand-transduced cells

30
w 25 Lysis data for ligand—transduced cells
'®
3'20
et
g
o 15
g

10

5

0 —

//’ Prediction using
lysis rate —cNT for
Lysis data for control-transduced cells control-transduced cells
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Effector:Target Ratio

Tumor Cell Lysis by NK-Cells: Fit to Mouse Data



Mathematically Modeling the Specific
(Glove Sniffing) Killing of Cancer Cells:
New “de Pillis-Radunskaya Law”

II: Power Kill Law Il: Rational Kill Law

Percent Lysis

107 10° 10' 107 107 10°
Effector(CD8+T):Target(RMA-Rae1f}} Ratio

Rate of Target Cell
Lysisby T -cells:
(L/T)"
s+(L/T)"

Conventional vs DePillis-Rad Laws

Tumor Cell Lysis by CD8+T-Cells: Fit to Mouse Data

Ligand-Transduced Cancer Cells




Specific (Glove Sniffing) Killing of Cancer Cells
Follows New Mathematical Law
De Pillis-Radunskaya Law

NEW DE PILLIS-RAD LAW also applies to
HUMAN DATA:

Model Prediction of Percent Lysis Compared to Patient Data: Model Prediction of Percent Lysis Compared fo Patient Data:
70 : Power Form & __Rational Form _
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Tumor Cell Lysis by CD8+T-Cells: Validated with Human Data

Rate of Target Cell Lysis by T -cells =




More Good Fit Evidence: Fit to Other Mouse Data

Data from Antoni Ribas, UCLA, fit to raw chromium release assay data.

Parameter Fitting for Ribas Study 1 CDSKO Data

| I
@ CExperimental Data
mm [ Temm
1 Dwith el =1
mem —| T Term

20
Cell Lysis Data

15

10

% Tumor Cells Killed

New Rational Form Fit

0 10 20 30 40 50 B0 70 80 60 100
Effector/Target Ratio




Elements in Mathematical Model Equations

% = aT(1 —bT) —cNT —dD
dN T?
— =e— N + N — pNT
dt J h+T° P
2
—dL=—mL+j 2 > L—qLT
dt k +D
(1)

Where D = T

s +(4)

Logistic Growth

NK-Tumor Kill:
Power Law

CD8-Tumor Kill:
Rational Law

Immune Recruitment:
Michaelis-Menten
Kinetics



Are Some Parameters More

Important than Others?
eQuestions:

How do simulation outcomes vary
as the parameters are varied?

*\Which parameters are the best
predictors of successful outcomes?

One Answer:
*Need Sensitivity Analysis



Model Simulations: Traditional Sensitivity Analysis
one parameter is changed at a time

Patient 9: Parameter Change by 1 percent

[_] Increase parameters
A0+ Bl Decrease parameters |

n
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T
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1

Percent Change in Final Tumor Size After 25 Days
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Simulation parameters: human, no chemo




Uncertainty Analysis: Latin Hypercube Sampling
all parameters are varied simultaneously

Time evolution of the uncertainty in tumor size

Sensitivity Analysis (LHS) ...Estimlatedpmmet;muues | | | pE

107k
. . £ | = Medi
Method: Latin Hypercube Sampling (LHS) [3]. i U:pznand lower quartiles

. . . 10 g
Outcome: the uncertainty in the predicted tumor W [ E
size grows over time. ool l { l

Details: 10,000 sample parameter sets were l [
randomly selected in a range centered around
the estimated values, and each parameter was
varied independently over its own range. Median
tumor size over time is depicted by the solid
blue line. Upper and lower quartiles are shown
by green lines. Full range of outcomes given by

red bars.
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Comment: While the uncertainty in the prediction
grows over time, it is clear that the distribution of 10
tumor sizes is not uniform, but rather is i ]
concentrated at the lower tumor levels. 10°; : m s % ot

Time in Days
10,000 runs with e=0.013 and initizl tumor, NK and CDB+ sizes of .1, .314,.00574 (all™ USJ

[3] S.M. Blower and H. Dowlatabadi,
“Sensitivity and Uncertainty Analysis of Complex Models of Disease
Transmission: an HIV Model, as an Example. Simulation parameters: human, no chemo, 5% range or reported ranges,

International Statistical Review (1994), 62,2,pp.229-243. truncated normal distribution



Model Simulations: Latin Hypercube Sampling
PRCC Results

* PRCCs (partially ranked correlation coefficients): measure outcome's sensitivity to each parameter. Bar graph:
Relative ranking of the six most sensitive parameters with respect to tumor size.

* Parameters d and eL: represent overall tumor-cell lysis rate and the strength of the immune-tumor interaction,
respectively. Both can be estimated from patient data, as in this example. Parameter a represents tumor growth rate

* Predictions: Tumor aggressiveness as well as patient specific immune strength may predict patient response to
immunotherapy treatment.

1

Final Tumor Levels after 25 days

0.8
0.6
0.4

0.2

PRCC
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10,000 runs with

el m r

Parameter
2=0.013 and initial tumor, NK and CO8+ sizes of .1, .314,.00574 {all™ 05:

Significance w/ Student’s T:

P-values all less than
0.00001



Validation: Simulating Vaccine in Mouse Model

Effective Response by NK and CD3 Cells to

Ineffective Response by NK and CD8 Cells to
Ligand Transduced YVaccine
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Figure 4: de Pillis

Validation: These In Silico Experiments Mirror In Vivo Mouse Experiments

See: dePlllis et al, Cancer Res, 65(17), 2005




Outline

Background: Cancer and genesis of this work
The original motivating problem
Controlling treatment

Immunology of cancer

— The Immune System Targets Cancer
— Two Kinds of Immune Responses: Innate and Specific

Extended model, include immune
components

Adding treatment
Specific cancer: B-CLL

Work in progress: Spatial tumor models
— Hybrid CA models
— 3D PDE models



Experimenting with Treatments

 Must Extend the Model to Examine:
— Chemo Alone
— Immunotherapy Alone
— Combined Therapy

 To Simulate Dudley’s Human Data
o Add IL-2 immunotherapy

« Add Circulating Lymphocytes to track
“*health”



Multi-Population Model Schematic
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Parameters
a, b,c,d,s,
and el were
fit from
published
experimental
data. All
other
parameters
were
estimated or
taken from

the literature.

No IL2

System of Model Equations:
Additional Treatments Possible

dTl’ |
—-=al(1—bT) —eNT — DT — Kr(1 - e MT
dN _ T? : Y
—eC — N N —pNT — Kn(1l —e )N
= IN+g W T2 p N(l—e)
dL . D*1* ]
= = —mL —I—jk n DETEL —qLT + (1N +rC)T
: | LI
CuNL? — Kp(l—eMyp 4 P12 o ¢
L( ) p L(?)
dc P - —M - -
—=a- BC — Keo(1—e)C  Circulating lymphocytes
dM _ :
7 = "M +um (t) Rate of drug administration and decay
% = —IHII + t-‘j’{tj IL-2 boost
e
g (/T
s+ (L/T)

See dePIlllis et al, J. Theor. Biol., 2005




Bifurcation diagram: the effect of varying the

NK-kill rate, c.
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Mixed Therapy - Mouse Params
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Mixed Therapy - Human Params
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Top left: Pulsed chemo fa'ils oh 1OA6 tumor (healthy immune).
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Bifurcation Analysis: Basins of Attraction

(ODE model with IL-2)

«Stable Zero Tumor Equilibrium:

lmmune system keeps tumor under control

«Stable High Tumor Equilibrium:

Ilmmune system too weak to control tumor

Unstable Intermediate Tumor Equilibrium:

«System wants to move toward high or zero



Basin of Attraction of zero-tumor and
high-tumor equilibria

Basin of Attraftion of zero—tumor and high-tumor equilibria
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Flg, 5. Basins of attraction of the zero-tumor and high-tumor equilibria when the CD8% T-cell recruitment

parameter, 7 = 4.5.

See dePillis et al, J. Theor. Biol., 2005



Bifurcation Analysis: Basins of Attraction

Basins of Attraction
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Controlling treatment
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— The Immune System Targets Cancer
— Two Kinds of Immune Responses: Innate and Specific

Extended model, include immune
components

Adding treatment
Specific cancer: B-CLL

Work in progress: Spatial tumor models
— Hybrid CA models
— 3D PDE models



B-CLL model:
A work In progress...



B-Cell Chronic Lymphocytic
Leukemia (B-CLL)

« B-CLL: Cancer of the immune system. Characterized by the accumulation of
large numbers of white blood cells (B cells) in the blood, bone marrow, spleen
and lymph nodes.

« Current understanding: B-CLL cells derive from mature antigen-stimulated B-
cells that are immunologically competent.

* Fuzzy characterization: over 5K cells / u-liter
one measure

 Precise cause unknown
e No cure

« High proliferation rate more serious than high
numbers of cells

 NKcells, helper T cells and cytotoxic T cells
may all play a role in stemming the growth of
B-CLL

Subcellular localization of HS1 analyzed by confocal microscopy.
HS1 is uniformly distribuited in the cytosol of normal B cells,
while it shows a nuclear spotting distribution in B-CLL cells.

Image: http://www.vimm.it/research/images/semenzato_figl.jpg



Example Model Equations

dB
dt
dN
dt
dT
dt
dTH

dt

bs +(r-ds)B

— denBN — detBT

= bn — dunN — dveNB

BL
— (X—dTT — dTBTB + kaT THp
s + B"
Bl
=Pprw — drwiTH + ar THp
s + B"

Growth or Source

Death

Immune Cell Killing
Immune Recruitment




Source: Numerical Bifurcation Study

Equilibrium Values for B Cell Concentrations

Parameter Choice: bs

Represents: B-CLL creation
— A fraction of antigenically experieced immunologically

competent B cells.
— A constant source of newly mutated cells.

Units: cells/uL per day
Numerical value(s) used: 70 (range: [10,80])
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Number of cells

Numerical Simulations

Bifurcation Parameter: 2
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Number of cells

o

Numerical Simulations

Dimensional Solutions: Active Immune System
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Fitting for parameters (-r+dB)
Patients 331 &360*

Model ft to CLLI31 data
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Treatment Possibilities:

 Keating (2003) suggests:
Chemotherapy, Single and Combination

Reagimen Patisntz “CRH “OR Hef.
Chlorambucil alkylating agent 181 3 37 32
Fludarabine (Flu} purine analog 170 20 70 32
Flu+Cyclophosphamida (FC) 32 30 88 34
Flu+Rituzamab (Concurrsnt) a1 iy ad 37

(Sequeantial) a3 28 i 37
Fo+Hituximal 202 Lt a5 38

Combination therapies




Figure 13: Final ODEs
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Fludarabine vs Rituximab

Standard Fludarabine Therapy Alone Rituximab Therapy to Refractory Disease 5 Years After Detection
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Fludarabine was administered at 25 mg/m?®/day for the
first five days of every 28-day cycle for six cycles [7], and rituximab was admin-
istered at 375 mg_;"mg_;'-week for four weeks [10]. Both treatments prove rather
pathetic. Although fludarabine manages to lyse roughly 63% of the leukemic
cells (roughly 60000 cells/ L), this nonetheless leaves over 34000 cells /L be-
hind, eapable of returning to pre-treatment levels in under a vear and almost
all of which are now fludarabine-resistent. Meanwhile, rituximab achieves less
than 3% lysis (about 2500 cells/pl).



Combination Therapy

Dosage Scheduls for Interlocked Fludarabine—Rituximab Therapy
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Concurrent
treatment best:
93% lysis, killed
87700
cells/microliter
of blood. Still
below pre-
treatment levels
after 5 years.



Outline

Background: Cancer and genesis of this work
The original motivating problem
Controlling treatment

Immunology of cancer

— The Immune System Targets Cancer
— Two Kinds of Immune Responses: Innate and Specific

Extended model, include immune
components

Adding treatment
Specific cancer: B-CLL

Work in progress: Spatial tumor models
— Hybrid CA models
— 3D PDE models



Spatial Tumor Growth

Deterministic & Probabilistic:2D and 3D

Benign Malignant

A. Asymmetry  Symmetrical Asymmetrical
bejr ,
§ __‘:_’v!{ o A 'l\.- % M Fa g
http://www.lbah.com/Rats/ovarian_tumor.htm

B. Border Even edges Uneven edges
C. Color One shade Two or more shades

Volume cm?

1.1 283 63.1

Volume Doubling Times (days)
14 88 1,639 95

http://www.lbah.com/Rats/rat_mammary_tumor.htm http://www.loni.ucla.edu/~thompson/HBM2000/sean_SNO2000abs.html
Smaller than 6 mm - -

D. Diameter Larger than 6 mm

This simple ABCD approach is a usetul guide to help identify moles that should be evaluated. Photo
courtesy of Schering Corporation.

Image Courtesy http://www.ssainc.net/images/melanoma_pics.GIF



Goals for Spatial Modeling

 To model:
— Nutrient dependent tumor growth in 2D
— Immune system dynamics

e To explore:
— Effects of the Immune response
— Effects of tumor “gluttony”
— Effects of tumor adhesivity
— Dynamic Energy Budget concept (DEB)
— Effects of microenvironment

e Build from:
— Immunology literature, ODE concepts



Approach: hybrid cellular automata

e Laws of evolution are written as partial
differential equations or discrete rules,
elther stochastic or deterministic.

« Typically, all rules are eventually
discretized for numerical solution.

* |[nherent in these models: two time
scales, one for the (fast) diffusion of small
molecules, one for the evolution of cell
populations.




In Particular...

Include Tumor cells (living and necrotic), Immune cells
(NK and CTL), and normal Host cells.

Two types of nutrients: one for Maintenance and one
necessary for cell division (N).

Nutrients diffuse from a (constant) source: blood vessels
at the upper and lower edge of the computational
domain and are consumed by living cells.

NK cells are constantly replenished in order to maintain
relatively constant population.

CTLs are recruited when tumor cells are lysed or
recognized by the immune system.

Tumor cells die, proliferate and migrate, affected by local
nutrient concentrations.



Cellular automata - the i1dea...

o DePillis/Mallet/Radunskaya models
work w/ 2d, but can also be 3d

e Grid of elements where cells can be

located

.NK e Discrete time steps, cells:

* Move
* Divide

* Interact

NK  Die

« Signal
4 e Consume nutrients

e efc

Natural/regular
host cells



Model |

Hybrid PDE/CA model
2D spatial domain
Nutrient

sources

Initial cell scattering
Stochastic cell rules

Explore: Effect of varying
nutrient consumption rates

FIXED SOURCE

OmMmUoraS
.,

.t

FIXED SOURCE

-

S

OmMmUoraS



Nondimensional Nutrient PDEs

IN
= V2N — a*(H + NK + L)N — Aya?TN.
df /‘ /‘

Dimensionless rate of consumption Tumor excess consumption factor

oM \ \

v — = VM — a*(H + NK + L)M — Aya”TM.
:

N: nutrients required for proliferation
« M: nutrients required for survival

H: host cells

T: tumor cells

 NK: NK immune cells

o L: CD8+T lymphocytes



Cell rules

e Evolution: according to probabilistic rules
. consume nutrients

« Tumor cells: move, divide, die (from
insufficient nutrient, or from immune cell
attack)

* NK cells: move randomly, kill tumor, induce
CTL recruitment; one tumor cell kill allowed.

. move preferentially toward tumor,
Kill tumor, induce further CTL recruitment;
multiple tumor cell kills allowed.



Spherical Growth: Lower

nutrient consumption rates
 No Immune system...exp./lin. tumour growth

Tumor cell distribution after iteration

1000
¥ 105 Tumer cell population over time

900
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400

300

200

100 0 100 200 300 400 500 600 70O 8OO

Tumor cell cycles
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Papillary growth: Higher
nutrient consumption rates

- 1['4 Tumor cell population over time

Tumor cell distribution after 597 cell cycles

250 4
3 3
=l | 200
2t 1 150
5t

100

-1 B
5 | 50
D. M i L i i

0 100 200 300 400 500 600

Tumor cell cycle



Papillary versus Spherical

Spatial Tumor Growth: one nutrient, one blood vessel
*Nutrients diffuse from blood vessel (at top) in a continuous model (PDE).
*Cells proliferate according to a probabilistic model based on available nutrients.

A blood vessel
runs along the
top of each
square

04

Normal & cancer cell
consumption
coefficient

Cancer to normal cell consumption factor



Spatial Features: Add Chemo

Spatial Tumor Growth

Chemotherapy Experiments: Every Three Weeks

Cell count

Cell count

Compact Tumor's Cancer Ceunt Over Time

PrAL) . where B 0.5 lor once every 3 week pulse .
18f | == Cancer population g
— N lized chemo t x 10°
18F 1
14k g
12
1k 4
o8
D& .
L]
D2t .
o L L L L
[ 20 40 80 &0 100 120 140 180
Iteration
Gompad Tumar's Gancer Count Cver Time
@ w6 Frh_(:l 3] for ONCE evary 3 Wik puige
500
400
00t 8
= Cancer population
—— Normalized chemo treatment x 100
200 -
100
o A
] 50 100 150 00 50 300 50 450 500

Iteration

Cell count

Cell count

Gompad Tumars Gancer Gourt Ower Time
l'ﬂ'cfc 8 =01 lor once e 3 WK pulse

x 10t
2

14| === Cancer population
— Normalized chemo treatment x 10°

og

08

o4

0z

o 50 100 150 200

Heration

Compact Tumar's Ganeer Gount Over Time:

ano whare 8 =001 lor a once svery 3 weok pulse
T T T

= Cancer population

s00 1 o 1 chemo treatment x 100 8

Iteration



Spatial Features: Add Chemo

Spatial Tumor Growth

Chemotherapy Experiments: Every Two Weeks

Cell count

Cell count

Compacl Tymor's Cancer Cognl Over Time

"_nu‘ while 8_=0.5 for a cnoe every 2 week pulse
- T . T T T
= Cancer population
— d chemo treatment x 10*
2
18F 4
1+ i
08k 4
o b L L
[ 50 100 180 200 280
Iteration
Compact Tymor's Cancer Counl Over Time
a0 while 8 =0.05for a onee every 2 wees pulse
- T T T
= Cancer population
son b — d chemo treatment x 100 4
A
00
200k 4
100 k
o S S S S e
[ 50 100 180 200 280 300

Iteration

Cell count

Cell count
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400
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400

300

200+

Compact Tumaor's Cancer Coyrtl Owver Time
whie 8 =0.1 for a ence every 2 week pulse

T T T T T T T T T
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A
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Iteration

Compad Tumers Cancer Counl Over Time
while 8 =0.01 for a once every 2 week pulse
T T T T T T
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h L
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Iteration
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Add CTL recruitment to tumor

Tumor call population over time
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Spatial Tumor Growth
NK and CD8 Immune Activity

2400
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Simulation 1: Tumor Simulation 2: Tumor

Thanks: Dann Mallet



Immune cell infiltration:
Qualitative agreement with
biological experiment

Tumor cell distribution after 354 cell cycles

250

200

150

100

ih) 50 100 150 200 250

Simulation. Tumor cells (white)
infiltrated by immune cells (black).

Ovarian carcinoma. Tumor cells (blue)
infiltrated by immune cells (gray).
Mallet & de Pillis JTB 239, 2006 Thanks: Zhang et al 2003



Radiation Treatment: In progress

o Goal of radiation: create enough DNA
double-strand breaks to cause cell
death.

o Standard model: Linear Quadratic (LQ)

AT —abh—3D2
S = N/N, =e *P~FP

o LQ-modified with oxygenation effect -
hypoxic cells less vulnerable to radiation:
Need OER (oxygen enhancement ratio):
standard is 2.5to 3

S (p) — ¢ @H -OFE Ro(p)-Dosep—Br-(OE|Rg {pj-Dﬂsep}i



Radiation Treatment

No treatment Radiation cycles 100-120

p p
e needed to see this picture. are needed to see this picture.

50x50 grid. Cycles 80 to 140. Radiation: Alternate
Days (cycles 100-120), 3 Grays per dose.



HMC Mathematics Clinic: 5 Undergraduates
and LANL

 The three cell types within the model are:
— proliferating cells: alive, can divide and grow
— guiescent cells:
— necrotic cells: dead

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



Simulated Model Cross-Section

e Grid site
-
e Tumor cell

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed

LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



Matlab Imaging — 2D Slices

Cell Types Growth Factor Concentration

140

120

100

40

20
G0 o

20 30 40
K Axis

10

100 120 140

Ei =

20 40
# Axis

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



Linear Vasculature - Tumor Growth

QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.

2D slice taken over several time steps

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



Lattice Vasculature — Tumor Growth: 2D
Slice of 3D Computation

Series of fixed-depth 2D slices taken over several time steps

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



Hex Lattice Vasculature —
Tumor Growth

QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.

2D slice taken over several time steps

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



3D Vasculature — Fly-Through

Series of fixed-depth 2D slices taken over several time steps

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



Chemotherapy Treatments
37 MCS

No Treatment Low Dose High Dose
Chemotherapy Chemotherapy
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200
200

g
2 7 @
© T o
G o
O/ Grid Sites 260 O/ Grid Sites 260 O/ Grid Sites 260
Red: Quiescent; Dark Yellow: ; Blue: Apoptotic;
Light yellow: ; Light Blue Line: Blood Vessel

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



Chemotherapy Treatments
40 MCS

No Treatment Low Dose High Dose
Chemotherapy Chemotherapy
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Red: Quiescent; Dark Yellow: ; Blue: Apoptotic;
Light yellow: ; Light Blue Line: Blood Vessel

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



Chemotherapy Treatments
50 MCS

No Treatment Low Dose High Dose
Chemotherapy Chemotherapy
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Red: Quiescent; Dark Yellow: ; Blue: Apoptotic;
Light yellow: ; Light Blue Line: Blood Vessel

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



Chemotherapy Treatments
60 MCS

No Treatment Low Dose High Dose
Chemotherapy Chemotherapy

200

200
200
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O/ Grid Sites 260 O/ Grid Sites 260 O/ Grid Sites 260
Red: Quiescent; Dark Yellow: ; Blue: Apoptotic;
Light yellow: ; Light Blue Line: Blood Vessel

HMC STUDENTS: Tiffany Head, Cris Cecka, Alan Davidson, Liam Robinson, Dana Mohamed
LANL Liason: Yi Jiang. Faculty Supervisor: L.G. de Pillis



3D Tumor Growth
Hybrid ODE-PDE Approach
with
Spherical Harmonics



Spherical Harmonics to Model
3D Tumor Growth

Use knowledge from ODE models

Incorporate spatial components to allow
visualization of 3D tumor

Spherical harmonics: Motivated by
medical imaging techniques

- A+ 1l-m)
}l C'ﬂ‘i‘?] - J A7 {l-l-mﬂ | (msﬂ)eb;p{ﬂnp}



ODE/PDE Eq

uations

drViT +a E}_I_UT(l—bT)—cNT—DT—I{T[l—e SrMyp
dy(x, T)VEN — pNT — Ky(1 — e S~ )N
d(x,T)V?L —qLT — K1(1 —e *+*)L
dys(x, T)V?M — v M
U
.2 — —
dy (x, T)V?U F£+U
€ pf‘-'NHIH A M
—Cy—Ng)+ == —Kx(1—e ovMa)N
f[f B — Ng) p— w( JNg
—mgly pilplp  upl$,Cplp  §(LT) L M;
NT CulT — — K (1—e oML Vi(t
o +In +r1(NT) +r2Cs{ }+§£+IH o +1s T E+ (T L(l—e )Le +mVL(t)

&

_ﬁ[a — Cg) — K¢(1 — e %eM)Cp [ Variable | Description

T(x,t) | Concentration () of tumor cells in tissue
—vuMp + Vi (t) N(x,t) | Concentration () of natural killer (NK) cells in tissue
. L(x,t) | Concentration () of CD8" T cells in tissue
; wWhiplpg M(x,t) | Concentration () of medicine in tissue
~#ls+0Cs + g9 +1g +mVi(t) U({x, t)} Concentration 8 of nutrient in tissue
XY Ng(t) | Concentration () of NK cells in the body
d [T) . Ly(t) | Concentration () of CD8' T in the body
s+ (%)f Cy(t) | Concentration () of circulating lymphoeytes in the body
! Mg(t) | Concentration () of medicine in the body
Iy(t) | Concentration () of interleukin-2 (IL2) in the body




PDE Types in Problem

Hyperbolic Boundary
iy

AY o g(Y)
Elliptic Inside

e

Parabolic from Boundary to Interior

X, oc AX + f(X)



Truncated Spherical
Coordinates

-
@ R P




Evolving Tumor Simulations

QuickTime™ and a QuickTime™ and a
decompressor decompressor
are needed to see this picture. are needed to see this picture.
QuickTime™ and a QuickTime™ and a
decompressor decompressor

are needed to see this picture. are needed to see this picture.



Thoughts on Modeling

“All models are wrong...some are useful”, Box
and Draper, 1987

“All decisions are based on models...and all
models are wrong”, Sterman, 2002

“Although knowledge is incomplete, nonetheless
decisions have to be made. Modeling...takes
place In the effort to plan clinical trials or
understand their results. Formal modeling
should improve that effort, but cautious
consideration of the assumptions is demanded”,
Day, Shackness and Peters, 2005



Final Thoughts on Cooperation

 The more we cooperate, the more rapid
progress we can make.

 The more we cooperate, the more
Interesting problems we can solve.

 The more we cooperate, the more
relevant our contributions.
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Thanks for listening!

Prof. L.G. de Pillis
http://www.math.hmc.edu/~depillis

Dept. of Mathematics

HARVEY MUDD

Claremont, CA, 91711
USA

depillis@hmc.edu




