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“Loosened” Bridge, Damage Detection/Health Monitoring

Data from Kerop Janoyan’s research group,
Department of Civil Engineering, Clarkson University.
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Figure 2: physical locations of the accelerometers ( This figure is taken
from ” In-Service Diagnostic of a Highway Bridge from a Progressive Dam-
age Case Study, Matthew J, Whelan, S.M.ASCE, and Kerop D. Janoyan,
P.E.,M.ASCE)
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Given: time series from sensors placed on a bridge

Problem: to infer effective structural connections among the sensor locations

Publication: Amila Sudu Ambegedara, JS, Kerop Janoyan, and Erik Bollt,
Information-theoretical noninvasive damage detection in bridge structures, Chaos (2016).




Clarkson

UNIERSITY

Engineering structures.....sometimes they fail.
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A Damaged bridge in Northridge, A damaged wind turbine at the
Canada

centre of the Lincolnshire

& Collapsed Cypress Freeway in Oakland after
J the 1989 Loma Prieta earthquake




Damage Detection In Bridge Structures

Physical Problem - I:
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Figure: (a) The Waddington bridge, NY route 345 (b) (Top view)
Physical spatial layout of the indexed accelerometers (c) Accelerometer !

'Mathew J. et.al, 2010



Field Testing and Damage Introduction

Scenarios

» Base line - Healthy Structure

» Damage 1 - Removal of 4
out of 6 bolts

» Damage 2 - Removal of all 6
out of 6 bolts

(b)

Figure: (a) A truck passes back and
forth (b) Diaphragm connection

Special Thank: Prof. Kerop Janoyan - Data



Information flow - Transfer Entropy answers a question: Does process
x depend just on x, or does it also depend on y.

WHICH reality is true: Xl = f(xn) - Versus - -xn+1 = f(xn,yn)

The main idea leading to transfer entropy will be to measure the deviation from the
Markov property, which would presume

Pxns11x®) = p(xnp1x®,yH)y,

Decide by Kullback-Leibler divergence

Ty—x = Drr(p(nsi11x,yD) | p(xns11xP)),

= H(xn111xy") — H(xn111x,359).

= [H(xXp+1,Xn) — Hxp)] — [HXn41,Xn,Yn) — H(Xn,yn)],

Ty = Hn+1ly) — Hyp1|xP,y®),

Tesy 7 Ty-sx.
-Widely popular applications: Stock Market, Financial Markets, Genomics, Bioinformatics, neural spike trains
VOLUME 85, NUMBER 2 PHYSICAL REVIEW LETTERS 10 JUuLY 2000

Measuring Information Transfer

Thomas Schreiber
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Causation entropy correctly identifies the causal network structure.
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Causation Entropy: Measure of Causality in Networks

Definition 1 (Causation Entropy). The causation entropy from process Q
to process P conditioned on the set of processes S is defined as

Cospis) = H(Pisa|S:) — H(Peya|St, Qo).

JSun, E. Bollt (Physica D, 2013). ;'u’;ﬁ‘::;ii"‘,?:; P's ;'u’;fj‘:ggii"‘lzyng z;ls 4 a
JSun, D Taylor, E. Bollt, SIADS (2015)

Ty . x

An Example Y,

O Xet1l|--, =
X

o
Z o
Czox|(x,Y)

- 11 ” . TZ—>X
1. CSE itself does not “solve” the causal inference problem.

2. Definition simply emphasizes the fact that cause-and-effect involves all
three parts (cause, effect, and conditioning).



. i Clarkson
Basic Information Measures

. I(X;Z|Y
(_ 1 “d ire ['t till(firccl illllt'?'u(‘lillll)
X _ interaction) h(X)
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direct ) |
, i direct y
interaction interacti
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Y h(Y)

Figure: Direct and indirect mutual information interactions of continuous
random variables

Is X independent of Y given Z?

Hy: X L Y |Z

H: XXY|Z.
Ix.yviz=0ifandonlyif X 1L Y|Z



Solving the Causal Network Inference Problem

The Causal Network Inference Problem i
Given data samples of the process,{X "}
Goal: infer N_i (“causal parents”) for each i.

+

Optimal Causation Entropy (0CSE) Principle: The set of causal
“parents” is the minimal set of nodes which maximizes causation entropy.
K .
{Cmax = maxx [(X5); x?)

N,; = arg min | K|

K i
I(X5) XY =Chax

+

Optimal Causation Entropy (0CSE) Algorithm:

— (Iterative, incremental) local search

— Forward discovery + Backward removal
Model-free, fast (computationally efficient),
and quick convergence (data efficient).

Jie Sun, Dane Taylor, and Erik Bollt
Causal network inference by optimal causation entropy
SIAM Journal on Applied Dynamical Systems (2015)



On nonParametric Estimation ot the entropies

PHYSICAL REVIEW E 69, 066138 (2004) @

Estimating mutual information

Alexander Kraskov, Harald Stogbauer, and Peter Grassberger
John-von-Neumann Institute for Computing, Forschungszentrum Jiilich, D-52425 Jiilich, Germany

Rather than use bins, estimate invariant density in those bins,
compute the various joint and conditional densities

Bl o SETEERES
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—and then entropies from there

Make the estimation based on sampled points, and the densities and so entropies are related
to sizes of neighborhoods, of “kth” nearest neigbors.

“knn methods” also benefit from kdtree searches for near neighbors — knnsearch

The “jist of it” |
c,=m"?IT(1+d/2)/2¢ for the Euclidean
(x) is the digamma function
pi(€) = cq€' pulx;) "z
N ;4 ot |
H(X)=— (k) + Y(N) +log ¢, + ]T,z log €(i) Lord, Sun, Bollt, (2018)
i=1

-Kozachenko and Leonenko (1987), Kraskov et al. (2004)
-For CMI: Frenzel and Pompe, 2007; Ve- jmelka and Palus, 2008




A parametric estimator

Normal pdf: f(m) X exp(_amz)
Laplace pdf: f({ﬂ) X exp(—ﬁ|$|)
1 | | — Empirical 14 — Empirical
= = Normal 191 = = Normal
0.8 ----Laplace --=-Laplace
1t
0.6 08l
0.4f 06
04r
0.2
0.27
0 ' 0
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Accelerations at most of the sensor locations are better captured by the
Laplace distribution than the Normal (Gaussian) distribution.

Publication: Amila Sudu Ambegedara, JS, Kerop Janoyan, and Erik Bollt,
Information-theoretical noninvasive damage detection in bridge structures, Chaos (2016).



Basic Statistical Findings

Sensor data follow a Laplace distribution rather than normal
distribution:

) 2K(d/2)—1( %q(x))

fx (X) = 5@ v d/2)—1 (1)
T — x € R, K(g/2)_1 - modified
. ‘lﬁ.fié.";i Bessel function of the second

kind with order (d/2) — 1

evaluated at x,

q(x) =A(x—p) T (x— ),

-5 0 5 10
acceleration

[t - mean vector, X2 - covariance
Figure: Distribution of the sensor matrix, A = y/det(X).
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» |dentify the maximal MI pairwise interaction between sensors

Discovery Stage

» Use shuffle test to confirm its influence as information
transference

» Algorithm 1: Discovery Stage

Input: time series X, = {x."} i1 N1 r and component i
Output: K; | |

1: Initialize: K; «— {0}, p +— ¢, x +— 1

2: while x>0 do

3: p e argmaxi k) (X XD XG)

4: if (X\V; X7 X' passes the Shuffle Test (Algorithm 3) then

5 K; — K; U {p}

6: else

7 x+« 0

8 endif

9: end while




Removal Stage

» Remove the indirect nodes in the set K;
» Use shuffle test to check the direct influence

» Algorithm 2: Removal Stage

Clarkson

UNIERSITY

1: for everyj € K, do

Input: time series X, = {x." } i-1... Ni1...7» cOmponent i, and set K;
Output: X;

if (X" XV x®/UY fails the Shuffle Test (Algorithm 3) then

2:

3: K: — K;/{j}
4:  endif

5: end for

6: IE',- — K;

2 -
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Shuffle Test

Is X independent of Y given Z?

» A method for stoping criteria Ho: X L Y|Z
» Algorithm 3: Shuffle Test Hi: XXY|Z.

Since no finite size sample behavior for CMI

Ix.yviz=0if and only if X I Y|Z

e =l e = U

. end if

Input: time series (X, = {x\" ;XY = {x7}: X" = (x{},1=1,...,7),
threshold ¢ and number of shuffles N,
QOutput: pass/fail
fori=1,...,N;do
generate a random permutation: ¢ : {1,...,T} — {1,...,T}
use o to obtain a shuffled time series, ¥; = {y,}, where y,; + x
compute I, «— I(X\", Y, [x"*))
end for
§ +« the [ (1 — O)N; thlargest value from {/,, ..., Iy, }
if 7(X\”; X" 1x/*") > S then
output: pass
else
output: fail

0
a(r)

Idea: to simulate independence, randomly permute
- . . . n
x-values In {ng Vi, Zi i1
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|—MI(0,0.108) =—MI(0.108,0.216) == MI(0.216,0.324 ) wmmM|(0.324,0.432) mumM|(0.432-0.54)|
T —

. » Categorize M|

L into five ranges
Lo Thickness of
v
the line is
] -5 ’8 L L ‘5 -
e propo‘rtlonal to
(a) MI-Baseline-Lateral (b) MI-Damage1-Lateral (c) MI-Damage2-Lateral magnitUde Of
the MI

Figure: Pairwise mutual information
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Difference of the Pairwise MI prpensiry
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» Red - negative changes after
1817 16 15 1413 g 17 6 15 1413

A A R | e A A the damage is introduced
0 A 0 A (DA A O e » Blue - positive changes the
(a) Ml{Damage1-Baseline)-Lateral (b) MI(Damage2-Baseline)-Lateral d a m age |S | nt ro d U Ced
Figure: Difference of the pairwise > Some connections entirely
mutual information vanished after the damage is
introduced

» Damage to the structure seems to generally lower the value of
mutual information in the lateral direction between spatially

nearby sites (a lower coupling)

» Such changes can be improved with further structural damage



oMII Interactions

o-Mli(Damage1)-Lateral

o-Mll(Baseline)-Lateral
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Figure: The optimal mutual information
interaction between baseline and damaged

bridges
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» The bridge structure
supports more
information flow in
the same direction as
the truck lanes

» Exceptions are near
the center -Due to
the first diaphragm
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Difference of the oMII Interactions

___©o-Mil (Damage1-Baseline) o-MIl (Damage2-Baseline)
TS A e == - » Dashed red - lost
12 A1 M0 9= EH T | | ao g e | connections
[ =TT 6 - - AE 13 | | 4g .’.ﬁ 46 - - Al 3 - > Black - new
connections
F 24 23 22 #4—20 197 | 94 93 @2 420 0- e
» Significant
e om ] e meee—e7 - 26250 chgnges in the
_ _ _ information
Figure: Difference of the optimal mutual
. o . . transfer
information interaction between baseline
and damaged bridges
» Sudu Ambegedara, Amila, et. al. “Information-theoretical

noninvasive damage detection in bridge structures.” Chaos:

An Interdisciplinary Journal of Nonlinear Science 26.11
(2016): 116312.
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Future Work

A Fatigue Test for Wind Blades Using Information
Theoretical Measures

o iz

Figure: (a) Blade System Design Studies blade mounted for fatigue test
(b) Strain gauges locations on the wind blade (c) A Strain gauge




Noninvasive Damage Detection

Publication: Amila Sudu Ambegedara, JS, Kerop Janoyan, and Erik Bollt,
Information-theoretical noninvasive damage detection in bridge structures, Chaos (2016).

(1) Directed connections are mostly in the direction of traffic flow
(2) The identified vertical “gap” corresponds to a structural “boundary”

Entropy-based
Inferred directed oMl inference
functional connections Multivariate time

: series data
_,;f/ ; :
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An Information Theory-Based
‘Thermometer’ to Uncover Bridge Defects

By Lakshmi Chandrasekaran















