Clarkson UNIVERSITY

A Nondestructive Damage Detection Method

for BridgeStructures using Information-Theoretic Methods Amila Sudu Ambegedra, Jie Sun, Kerop Janoyan, Erik Bollt

bolltem@clarkson.edu, http://www.clarkson.edu/~bolltem

"Loosened" Bridge, Damage Detection/Health Monitoring

Bridge Location

New York State Route 345 over big sucker brook in the town of Waddington , NY. Constructed in 1957

Amila

Kerop Janoyan Jie Sun

Ambegedara

Data from Kerop Janoyan's research group, Department of Civil Engineering, Clarkson University.

Figure 2: physical locations of the accelerometers (This figure is taken from " In-Service Diagnostic of a Highway Bridge from a Progressive Damage Case Study, Matthew J, Whelan, S.M.ASCE, and Kerop D. Janoyan, P.E.,M.ASCE)

Given: time series from sensors placed on a bridge Problem: to infer effective structural connections among the sensor locations

Publication: Amila Sudu Ambegedara, JS, Kerop Janoyan, and Erik Bollt, Information-theoretical noninvasive damage detection in bridge structures, Chaos (2016).

Engineering structures.....sometimes they fail.

A Damaged bridge in Northridge, Canada

A damaged wind turbine at the centre of the Lincolnshire

Collapsed Cypress Freeway in Oakland after the 1989 Loma Prieta earthquake

Damage Detection In Bridge Structures **Clarkson**

Physical Problem - I:

Figure: (a) The Waddington bridge, NY route 345 (b) (Top view) Physical spatial layout of the indexed accelerometers (c) Accelerometer ¹

¹Mathew J. et.al, 2010

Field Testing and Damage Introduction Clarkson

Figure: (a) A truck passes back and forth (b) Diaphragm connection

Special Thank: Prof. Kerop Janoyan - Data

Scenarios

- Base line Healthy Structure
- Damage 1 Removal of 4 out of 6 bolts
- Damage 2 Removal of all 6 out of 6 bolts

Information flow - Transfer Entropy answers a question: Does process x depend just on x, or does it also depend on y.

WHICH reality is true:
$$x_{n+1} = f(x_n)$$
 - versus - $x_{n+1} = f(x_n, y_n)$

The main idea leading to transfer entropy will be to measure the **deviation from the** Markov property, which would presume

$$p(x_{n+1}|x_n^{(k)}) = p(x_{n+1}|x_n^{(k)}, y_n^{(l)}),$$

Decide by Kullback-Leibler divergence

$$T_{y \to x} = D_{KL}(p(x_{n+1}|x_n^{(k)}, y_n^{(l)})||p(x_{n+1}|x_n^{(k)})),$$

$$= H(x_{n+1}|x_n^{(l)}) - H(x_{n+1}|x_n^{(l)}, y_n^{(k)}).$$

$$= [H(x_{n+1}, x_n) - H(x_n)] - [H(x_{n+1}, x_n, y_n) - H(x_n, y_n)],$$

$$T_{x \to y} = H(y_{n+1}|y_n^{(l)}) - H(y_{n+1}|x_n^{(l)}, y_n^{(k)}),$$

$$T_{x \to y} \neq T_{y \to x}.$$

-Widely popular applications: Stock Market, Financial Markets, Genomics, Bioinformatics, neural spike trainsVOLUME 85, NUMBER 2PHYSICAL REVIEW LETTERS10 JULY 2000

Measuring Information Transfer

Thomas Schreiber

Transfer Entropy (T) vs. Causation Entropy (C)

Causation entropy correctly identifies the causal network structure.

Causation Entropy: Measure of Causality in Networks

Definition 1 (Causation Entropy). The causation entropy from process Q to process P conditioned on the set of processes S is defined as

three parts (*cause*, *effect*, and *conditioning*).

Basic Information Measures

Figure: Direct and indirect mutual information interactions of continuous random variables

Is X independent of Y given Z? $H_0: X \perp Y \mid Z$ $H_1: X \not\perp Y \mid Z$. $I_{X:Y\mid Z} = 0$ if and only if $X \perp Y \mid Z$.

Solving the Causal Network Inference Problem

The Causal Network Inference Problem Given data samples of the process, $\{X_t^{(i)}\}$ Goal: infer N_i ("causal parents") for each i.

Optimal Causation Entropy (oCSE) Principle: The set of causal "parents" is the *minimal* set of nodes which *maximizes* causation entropy.

$$\begin{cases} C_{\max} = \max_{K} I(X_{t-1}^{(K)}; X_{t}^{(i)}) \\ N_{i} = \arg\min_{I(X^{(K)}; X^{(i)}) - C} & |K| \end{cases}$$

Optimal Causation Entropy (oCSE) Algorithm:

- (Iterative, incremental) local search
- Forward discovery + Backward removal Model-free, fast (computationally efficient), and quick convergence (data efficient).

Jie Sun, Dane Taylor, and Erik Bollt *Causal network inference by optimal causation entropy* SIAM Journal on Applied Dynamical Systems (2015)

On nonParametric Estimation of the entropies

PHYSICAL REVIEW E 69, 066138 (2004)

Estimating mutual information

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger John-von-Neumann Institute for Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany Rather than use bins, estimate invariant density in those bins, compute the various joint and conditional densities – and then entropies from there

Make the estimation based on sampled points, and the densities and so **entropies are related to sizes of neighborhoods, of "kth" nearest neigbors**.

"knn methods" also benefit from kdtree searches for near neighbors – knnsearch

The "jist of it"

$$c_d = \pi^{d/2} / \Gamma(1 + d/2) / 2^d$$
 for the Euclidean
 $\psi(x)$ is the digamma function
 $p_i(\epsilon) \approx c_d \epsilon^d \mu(x_i)$
 $\hat{H}(X) = -\psi(k) + \psi(N) + \log c_d + \frac{d}{N} \sum_{i=1}^N \log \epsilon(i)$

-Kozachenko and Leonenko (1987), Kraskov et al. (2004) -For CMI: Frenzel and Pompe, 2007; Ve- jmelka and Palu^{*}s, 2008

A parametric estimator

Accelerations at most of the sensor locations are better captured by the Laplace distribution than the Normal (Gaussian) distribution.

Publication: Amila Sudu Ambegedara, JS, Kerop Janoyan, and Erik Bollt, Information-theoretical noninvasive damage detection in bridge structures, Chaos (2016).

Basic Statistical Findings

Sensor data follow a Laplace distribution rather than normal distribution:

$$f_X(\mathbf{x}) = \frac{1}{2\pi^{(d/2)}} \frac{2}{\lambda} \frac{\mathcal{K}_{(d/2)-1}\left(\sqrt{\frac{2}{\lambda}}q(\mathbf{x})\right)}{\left(\sqrt{\frac{\lambda}{2}}q(\mathbf{x})\right)^{(d/2)-1}}$$
(1)

data

 $\mathbf{x} \in \mathbb{R}^d$, $K_{(d/2)-1}$ - modified Bessel function of the second kind with order (d/2) - 1evaluated at \mathbf{x} ,

$$q(\mathbf{x}) = \lambda \left(\mathbf{x} - \mu\right)^{\top} \Sigma^{-1} \left(\mathbf{x} - \mu\right),$$

 μ - mean vector, Σ - covariance matrix, $\lambda = \sqrt{\det(\Sigma)}$.

Discovery Stage

- Identify the maximal MI pairwise interaction between sensors
- Use shuffle test to confirm its influence as information transference
- Algorithm 1: Discovery Stage

Input: time series $X_t = \{x_t^{(i)}\}_{i=1,...,N;t=1,...,T}$ and component *i* Output: K_i 1: Initialize: $K_i \leftarrow \{\emptyset\}, p \leftarrow \phi, x \leftarrow 1$ 2: while x > 0 do 3: $p \leftarrow \arg \max_{j \neq \{i, K_i\}} I(X_t^{(i)}; X_t^{(j)} | X_t^{(K_i)})$ 4: if $(X_t^{(i)}; X_t^{(p)}; X_t^{(K_i)})$ passes the Shuffle Test (Algorithm 3) then 5: $K_i \leftarrow K_i \cup \{p\}$ 6: else 7: $x \leftarrow 0$ 8: end if 9: end while

- Remove the indirect nodes in the set K_i
- Use shuffle test to check the direct influence
- Algorithm 2: Removal Stage

Input: time series $X_t = \{x_t^{(i)}\}_{i=1,...,N;t=1,...,T}$, component *i*, and set K_i Output: \hat{K}_i 1: for every $j \in K_i$ do 2: if $(X_t^{(i)}; X_t^{(j)}; X_t^{(K_i/\{j\})})$ fails the Shuffle Test (Algorithm 3) then 3: $K_i \leftarrow K_i/\{j\}$ 4: end if 5: end for 6: $\hat{K}_i \leftarrow K_i$

Shuffle Test

				Is X independent of Y given Z?	
	A method for stoping criteria		ria	$H_0: X \perp Y \mid Z$	
	Algorithm 3: Shuffle Test			$H_1: X \not\bowtie Y \mid Z.$	
	Since r	Since no finite size sample behavior for CMI $I_{X:Y Z} = 0$ if and only if $X \perp Y Z$			
	Input: time series $(X_t^{(i)} = \{x_t^{(i)}\}; X_t^{(j)} = \{x_t^{(j)}\}; X_t^{(K)} = \{x_t^{(K)}\}, t = 1,, T)$, threshold θ and number of shuffles N_s Output: pass/fail				
	1:	for $\ell = 1,, N_s$ do			
	2:	2: generate a random permutation: $\sigma: \{1,, T\} \rightarrow \{1,, T\}$			
	3: use σ to obtain a shuffled time series, $Y_t = \{y_t\}$, where $y_t \leftarrow x_{\sigma(t)}^{(j)}$				
	4: compute $I_{\ell} \leftarrow I(X_t^{(i)}, Y_t X_t^{(K)})$				
	5: end for				
	6: $S \leftarrow \text{the } \lfloor (1 - \theta)N_s \rfloor \text{th largest value from } \{I_1, \dots, I_{N_s}\}$ 7: if $I(X_t^{(i)}; X_t^{(j)} X_t^{(K)}) > S$ then				
	8:	8: output: pass			
	9:	else	Idea: to simulate independence, randomly permux-values In $\{x_i, y_i, z_i\}_{i=1}^n$	ulate independence, randomly permute	
	10:	output: fail		$\int r \cdot \eta \cdot \gamma \cdot \langle n \rangle$	
	11:	end if		$(x_i, y_i, z_i)_{i=1}$	

Pair Wise Mutual Interactions

arksor

Figure: Pairwise mutual information

- Categorize MI into five ranges
- Thickness of the line is proportional to magnitude of the MI

Difference of the Pairwise MI

(a) MI(Damage1-Baseline)-Lateral (b) MI(Damage2-Baseline)-Lateral

Figure: Difference of the pairwise mutual information

- Red negative changes after the damage is introduced
- Blue positive changes the damage is introduced
- Some connections entirely vanished after the damage is introduced
- Damage to the structure seems to generally lower the value of mutual information in the lateral direction between spatially nearby sites (a lower coupling)
- Such changes can be improved with further structural damage

oMII Interactions

The bridge structure supports more information flow in the same direction as the truck lanes

arksor

VERSI

 Exceptions are near the center -Due to the first diaphragm

Figure: The optimal mutual information interaction between baseline and damaged bridges

Difference of the oMII Interactions

Dashed red - lost connections

Black - new connections

19

 Significant changes in the information transfer

Figure: Difference of the optimal mutual information interaction between baseline and damaged bridges

Sudu Ambegedara, Amila, et. al. "Information-theoretical noninvasive damage detection in bridge structures." Chaos: An Interdisciplinary Journal of Nonlinear Science 26.11 (2016): 116312.

Future Work

A Fatigue Test for Wind Blades Using Information Theoretical Measures

Figure: (a) Blade System Design Studies blade mounted for fatigue test (b) Strain gauges locations on the wind blade (c) A Strain gauge

Noninvasive Damage Detection

Publication: Amila Sudu Ambegedara, JS, Kerop Janoyan, and Erik Bollt, Information-theoretical noninvasive damage detection in bridge structures, Chaos (2016).

(1) Directed connections are mostly in the direction of traffic flow(2) The identified vertical "gap" corresponds to a structural "boundary"

An Information Theory-Based 'Thermometer' to Uncover Bridge Defects

By Lakshmi Chandrasekaran