Efficient integration of fractional beam equation with space-time noise

Zhongqiang (Handy) Zhang

Department of Mathematical Sciences, Worcester Polytechnic Institute

joint work with Zhaopeng Hao

April 19, 2018 SIAM UQ Supported by MURI

Motivation of fractional modeling

$${}_{0}\partial_{t}^{\alpha}u(x)=\frac{1}{\Gamma(n-\alpha)}\int_{0}^{t}\frac{\frac{d^{n}}{d\xi^{n}}u(\xi)}{(t-\xi)^{\alpha-n+1}}d\xi, \quad t>0, \quad (1)$$

with $n-1 < \alpha < n$ where n is a natural number. damping

- $oldsymbol{lpha} = \mathbf{0}$ the term represents a restoring force
- $oldsymbol{lpha} = 1$ it represents a classical viscous damper
- Effect of fractional order in a similar but linear model (Lorenzo et al 2014) with α ∈ [0,1] on power spectral density in frequency domain.
- Providing different damping effects in models is big in application of fractional calculus.

Figure: Numerical approximation for u(x, t), $\alpha = 0.5$

Motivation of fractional modeling

$${}_{0}\partial_{t}^{\alpha}u(x)=\frac{1}{\Gamma(n-\alpha)}\int_{0}^{t}\frac{\frac{d^{n}}{d\xi^{n}}u(\xi)}{(t-\xi)^{\alpha-n+1}}d\xi, \quad t>0, \quad (1)$$

with $n-1 < \alpha < n$ where n is a natural number. damping

- $oldsymbol{lpha} = 1$ it represents a classical viscous damper
- Effect of fractional order in a similar but linear model (Lorenzo et al 2014) with $\alpha \in [0,1]$ on power spectral density in frequency domain.
- Providing different damping effects in models is big in application of fractional calculus.

Figure: Numerical approximation for u(x, t), $\alpha = 1.5$

larger $\alpha \Longrightarrow$ larger mean but smaller variance

Conclusion and ongoing work

- Higher-order scheme in time: Is $O(\tau^{3/2})$ possible?
- Error estimates for numerical methods
 - Analysis: regularity of solutions
- Develop efficient method for high dimensional cases, fully nonlinear problems

Thanks for your attention!