

Load Combinations											
3.4.1-1 to those likely to gravity design of member Table 3.4.1-1 presents a co	apply for SE Ex ers. omprehensive list design. When co	ombinations from AASHTO Table xam type problems that involve t of load factors and load combinations onsidering only the typical effect of the following:									
Load Combination	DC and DW	LL and IM									
Strength I	γρ	1.75									
Service I	1.00	1.00									
Fatigue I / Fatigue II		1.50 / 0.75									
		SE EXAM REVIEW COURSE — March 2017									

L	ive Loads											
Problem 20: Discuss multiple	e lane loading considerations.											
create the maximum effect. V	AASHTO 3.6.1.1.2 states that the number of loaded lanes shall be selected to create the maximum effect. When multiple lanes are loaded, the force effect shall be multiplied by a multiple presence factor m (Table 3.6.1.1.2-1) as follows:											
Number of Loaded Lanes	m											
One	1.2											
Тwo	1.0											
Three	0.85											
More than three	0.65											
	SE EXAM REVIEW COURSE — March 2017											

		l	_ive	e L	oad	ds					
moment a CALTRAN	6: Considerin long the bridg IS design aids a.gov/hq/esc/ tml. 35 ft simple spa	e a fo tec	and ma ound at	the /mai	um re follow nual/b	action a /ing link:	t the s anuals	sup s/bi Banci and Re	ridge-	Ising design- FIRECOMP 2008	
Span(ft)	Moment (k-ft)	1	End Shea End Reacti		Span(ft))	Momen (k-ft)	t		hear and	
11	126.7	b	57.9	b	31		525.8	b	76.8	a	
12	144.5	b	59.3	b	32		547.4	b	78.1	a	
13	163.1	ь	60.4	ь	33		569.2	ь	79.2	a	
14	181.9	ь	61.5	ь	34		591.2	ь	80.4	a	
15	200.9	ь	62.4	ь	35		613.4	b	81.4	a	
NCSEA	5					SE	EXAM RE	VIEW	COURSE -	– March 2017	

Live Loads Copyright © AISC – Reprinted with permission. All rights reserved.											
MOMENTS/PL											
Uola Monteria/C	SPAN 2	4 7 8 9 C									
	 e									
+ Area 0 .0400 .0700 .0900 .1000 .0900 .0700 .0402 .0204 .0167 .0152 .0300 .0550 .0700 - Area 0 0500 0100 0500 0200 0250 0300 0350 0402 0634 1167 0702 0500 0500 0500		.0700 .0550 .0300 .0152 .0167									
Area 0 0050 0100 0150 0200 0200 0350 0402 0654 1167 0702 0500		.05000500050007021167 .0200 .0050020005501000									
DE NCSEA Record Curved of Structure Tanginery Associations	REVIE	W COURSE — March 2017									

					Cop	oyrigl	nt © A	AISC	– Re	print	ed w	ith pe	rmis	sion.	All ri	ghts	rese	rved.				
Uni	•											OMENTS	/PL		_							
Uni loc at	•		.1	2	.3	A	SPAN 1	4	.7	.8	.9		1.1	.2	.3	A	SPAN	2	.7	.8		
		0	0	0	0	0	0	0					0				6. 0	6. 0	./	8 . 0	.9	с 0
	.1	0	.0874	.0747	.0621	.0494	.0368	.0242	.0115	0011	0138	0264	0231	0198	0165	0132	0099	0066	0033	.0000	. 0033	.004
	.2	0	.0749	.1498	.1246	. 0995	.0744	.0493	.0242	0010	026	0512	0448	0384	0320	0256	0192	0128	0064	.0000	.006.4	.01
	.3	0	.0627	.1254	.1882	.1509	.1136	.0763	.0390	.0018	035	0728	0637	0546	0455	0364	0273	0182	0091	.0000	.0091	.01
-	.4	0	.0510	. 1021	.1531	. 2042	.1552	.1062	.0573	.0083	040	0896	0784	0672	0560	0448	0336	0224	0112	.0000	.0112	.023
INVAS	.5	0	.0400	. 0800	.1200	.1600	. 2000	.1400	. 0800	. 0200	0400	1000	0875	0750	0625	0500	0375	0250	0125	. 0000	.0125	.02
	.6	0	.0298	.0595	.0893	.1190	. 1488	.1786	.1084	.0381	032:	1024	0896	0768	0640	0512	0384	0256	0128	.0000	.0128	.025
	.7	0	.0205	.0410	.0614	.0819	.1024	.1229	.1434	. 0638	0153	0952	0833	0714	0595	0476	0357	0238	0119	.0000	.0119	.02
	.8	0	.0123	.0246	.0370	.0493	.0616	.0739	.0862	. 0986	.010	0768	0672	0576	0480	0384	0288	0192	0096	.0000	.0096	.011
	.9	_	.0029	.0058	.0088	.0218	.0272	.0326	0381	.0435	.0490	0456	0399	0342	0285	0228	0171	0114	0057	. 0000	.0057	.01
	•	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	•	0	0	0	0
	.1	0	0039	0078	0117	0156	0195	0234	0273	0312	0351	0390	.0534	.0458	.0382	.0306	.0230	.0154	.0073	.0002	0074	015
	2	0	0064	0128	0192	0256	0320	~.0384	0448	0512	0576	0640	.0192	.1024	.0856	.0688	.0520	.0352	.0184	.0016	0152	033
	.3	0	0077	0154	0231	0308	0385	0462	0539	0616	0639	0770	.0042	. 0686	.1414	.1142	.0870	.0598	.0326	.0054	0218	049
SPAN 2	A	0	0080	0160	0240	0320	0400	0480	0560	0640	0720	0800	0184	.0432	.1048	.1664	.1280	. 0896	.0512	.0128	0256	064
2PA	.5	0	0075	0150	0225	0300	0375	0450	0525	0600	0675	0750	.0250	.0250	.0750	.1250	.1750	.1250	.0750	.0250	0250	075
	.6	0	0049	0128 0098	0192	0256	0320	0384	0448	0512	0576	0640	. 0256	.0128	.0512	.0896	.1280	.1664	.1048	.0432	0184	080
	.8	0	0032	0054	0096	0196	0245	0294	0343	0392	0441	0490	0218 0152	.0054	.0326	.0598	.0870	.1142	.1414	.0686	0042	071
	.9	0	0015	0030	0045	0060	0075	0090	0105	0120	0288	0320	0074	.0016	.0184	.0352	.0520	.0688	.0856	.1024	.0192	064
		0	0																	.0458	.0534	039
	c		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Live Loads Copyright © AISC – Reprinted with permission. All rights reserved.																	
							MC	MENTS/I	L									
Ualt laced et	A .1 .2	3 4	SPAN 1	4	.7	• 1	.9		.1	.2	3	4	SPAN 2	.6	.7	•	• 1	_
		, 1		.7	• •		-		- A - I	.9		.,		.4 1	۴I
+ Area	0 .0400 .0700	.0900 .100	0.1000	.0900	.0700	.0402	.0204	. 0167	.0152	.0300	.0550	.0700	.0750	.0700	.0550	0300	.0152	.0167
- Area	000500100	0150020	_	0300	0350	0402	0654	- 1167	.0702	0500	0500	0500	0500	0500	0500	0500	0702	1167
Total Area	0 .0350 .0600	.0750 .080	0 0750	.0600	0350	.0000	0450	1000	0550	0200	.0050	.0200	.0250	.0200	.0050	0200	0550	1000
National Council of Struct	CSEA Lural Engineers Associations										SE E	XAM	REVIE	w cou	JRSE —	- Marc	h 201	7

		SI	abs		
	em 39: Determi the bridge. Sla	b is simply su	pported ar	ad moment (for c nd spans 35 ft.	one lane)
f	c' = 5 ksi, F _v = 60 ks	i 3	6 ft		
					22 in.
15 in.					
Span(ft)	Moment (k-ft)	End Shear and End Reaction (k)	Span(ft)	Moment (k-ft)	End Shear and End Reaction (k)
11	126.7 b	57.9 b	31	525.8 b	76.8 a
12	144.5 b	59.3 b	32	547.4 b	78.1 a
13	163.1 b	60.4 b	33	569.2 b	79.2 a
14	181.9 b	61.5 b	34	591.2 b	80.4 a
15	200.9 b	62.4 b	35	613.4 b	81.4 a
NCS National Council of Structural Engin				SE EXAM REVIEW CO	URSE — March 2017

Problem 42: Determine the dead loads DC and DW and the maximum moment and shear for an interior strip of the simply supported 35 ft span flat slab bridge. Include a 25 psf future wearing surface.

Problem 44: Determine the Service I factored moment for the interior strip of the simply supported 35 ft span flat slab bridge. $\eta_i = 1.0$. Assume #9 bars at 6 in. o.c. for structural steel in slab. d = 20.4 in.

Recommended References & Study Materials

- Structural Engineering Sample Questions and Solutions. NCEES, 2014.
- Williams, Alan. *Structural Engineering Reference Manual*. Professional Publications, Inc., 2012.
- Barker, Richard M., and Jay A. Puckett. *Design of Highway Bridges: An LRFD Approach*. Wiley, 2013.
- "Bridge Design Aids," 2013, Caltrans.
- Moments, Shears and Reactions for Continuous Highway Bridges. AISC, 1986.

SE EXAM REVIEW COURSE — March 2017