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Climate variability in
the Pacific Ocean




The largest variability in the tropical Pacific:
The El Nino-Southern Oscillation (ENSO)
8283 [  97®8 February 20]6
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However, one index (Nino3.4) is not sufficient to
describe ENSO variability under a seasonally varying
background state, instead we need at least 2 degrees of
freedom...



ENSO forcing
under seasonally varying . )
background state ENSO combination mode
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ENSO’s interaction with the annual cycle creates
variability on a wide range of timescales (e.g., Stuecker
et al. 2015 PNAS) that can be temporally un-correlated

with traditional ENSO indices (such as Nino3.4)



What is the dominant mode of
climate variability in the Indian
Ocean?




Indian Ocean Dipole (IOD)

e zonal SSTA dipole mode in
the Indian Ocean
* Dipole Mode Index (DMI)
A A = Western |0 SSTA -
60E 120E Eastern |O SSTA

* air/sea coupled mode that peaks during SON season

e most IOD events

are forced by
ENSO

Stuecker et al. 2017,
GRL



ENSO and the Indian Ocean Dipole

1 N3.4/DMI lead/lag correlations
N3.4 leading DMI leading

0.g| utocorr(N3.4 OBS) mmmcroSSCOT(OBS) | DI\/” |S |ead|ng N34 by 2 and 16
0.6 | months —> has been interpreted
c that |OD forces ENSO in the same

year and in the following year
(negative correlation at ~16
months)

04 5015105 0 5 10 15 20

[months]

Stuecker et al. 2017,
GRL



Physical null hypothesis for independent IOD
(1) Model for ENSO-independent |OD events:

drl

i |— Ao + A4€Os (gt + @) | T(t) + &)

* Noise forced SST equation with a seasonally modulated
damping rate (Hasselmann 1976; de Elvira & Lemke 1982)

» Air/sea coupling (Bjerknes feedback) has a strong annual
cycle in the Indian Ocean (Eastern Equatorial IO convection,
ocean barrier layer thickness, thermocline depth, and
Indonesian Throughtlow transport -> Annamalai et al. 2003)

* Describes stochastically occurring 1OD events peaking in

the SON season (no ocean memory required)

Stuecker et al. 2017,
GRL




ENSO and the Indlan Ocean Dipole

2.5 yr Sine ENSO CM2.1 PARCP Experiment (n=15)

e N34

SON SON SON SON SON

* Motivation: Investigate the ENSO-forced |OD events next
« CM2.1 partially coupled (PARCP) experiment: prescribed
sinusoidal ENSO SSTA forcing in the eastern equatorial
Pacific (contours) with fully coupled dynamical ocean

everywhere else (including Indian Ocean)
e Using model experiments with sinusoidal ENSO forcing
allows us to clearly identity the timescales and patterns of

the climate system response to ENSO Stuecker et al. 2017,
GRL




ENSO and the Indian Ocean Dipole

2.5 yr Sine ENSO CM2.1 PARCP Experiment (n=15)
Composite time evolution

* DMI shows clear C-mode i
signature (correlation with ENSO X 1
cos(wa t); higher frequency 4
variability) e

SON SON SON SON SON



Physical null hypothesis for the ENSO/IOD relationship
(2) Model for ENSO-forced 10D events: ensemble

mean

‘;_: = [~ A + Ay cos (w,t + ;)| T(®)

e adding a seasonally-modulated ENSO forcing (C-mode) on
the right hand side (dominant signal in the CM2.1 model
experiment)

* as in the stochastic model, Indian Ocean air/sea coupling is
included and has an annual cycle

e Solution T will be referred to as C-mode*

Stuecker et al. 2017,
GRL



ENSO and the Indian Ocean Dipole

 \We can obtain the approximate analytical solution of
our model and gather terms with same timescale:

11 « dominant term in the |OD
T .= response has the same
T{) = - [cos (@,t — 07 + @,) cos (ot + @) | timescale as the seasonally
\/’13 + @3 modulated ENSO forcing



ENSO and the Indian Ocean Dipole

2.5 yr Sine ENSO CM2.1 PARCP Experiment (n=15)

Composﬂe time evolutlon
3/R(DMI CM2.1,C-mode*)=0.88 )

s DM CM2.1 (2 16 ——)
_3|= C-mode*(N3.4)

SON SON SON SON SON

e our simple model (C-mode™)
captures the ENSO-forced
|OD in the partially coupled
model experiment

Stuecker et al. 2017,
GRL



ENSO and the Indian Ocean Dipole

Conclusions so far...

a simple low-order model captures the observed ENSO/
|OD relationship (time evolution, lead/lag correlations,
and power spectrum)

no ocean memory (besides ENSO) is required for the 10D
the observed 2 month lead time of |OD with regard to
ENSO can be explained by the different annual cycle
phases of the coupled air/sea system in the Pacitic and
Indian Ocean respectively

the observed 15 month lead time of |IOD with regard to
ENSO can be explained by ENSO forcing the 10D (E
Nifio forces a positive 10D, El Nifo terminates, following
La Nifia forces a negative 10D)




Nino3.4 SST Anomaly (°C)
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ENSO predictability

ENSOQO Predictions from Jul 15 to Apr 17
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|OD predictability

Q: How much of 10D predictability originates from ENSO
predictability?

Stochastic-dynamical model (SDM):

(;_: = |=Ag + A4 €Os (w,t + @;) | T(t) — BN3.4(t) cos (w,t + @, ) + E(D)



|OD predictability

Anomaly correlation coefficient (ACC) skill of DMI prediction

e Porsist

ACC

o 1. 2 3 4 5 6 7 8 9
Lead [months]
/hao et al. 2017,

In Review
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|OD predictability

Anomaly correlation coefficient (ACC) skill of DMI prediction

Operational dynamical forecasts only
e==Persist esseee(FSv2 | slightly better than persistence forecast
(note the different initial conditions)
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|OD predictability

e Porsist essese CFSy2
SDM—-Z SDM-Z-F

0

1

2

3 4 5 6 7 8 9
Lead [months]

Anomaly correlation coefficient (ACC) skill of DMI prediction

Operational dynamical forecasts only

| slightly better than persistence forecast
(note the different initial conditions)

SDM-Z: Stochastic-Dynamical model

| with zero (Z) ENSO information with
{observed and CFSv2 initial conditions

/hao et al. 2017,
In Review
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|OD predictability

Anomaly correlation coefficient (ACC) skill of DMI prediction

Operational dynamical forecasts only
e===Persist  eseeeeClSv2 | slightly better than persistence forecast
SDM—Z SDM—Z—F . o .
——SDM—P --%--SDM—p—F | (nOte the different initial conditions)
SDM-Z: Stochastic-Dynamical model
\ | with zero (Z) ENSO information with
x |observed and CFSv2 initial conditions
o
N\ R Ry SDM-P: Stochastic-Dynamical model
with perfect (P) ENSO information with
10bserved and CFSv2 initial conditions
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|OD predictability
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Anomaly correlation coefficient (ACC) skill of DMI prediction

Operational dynamical forecasts only

I slightly better than persistence forecast

(note the different initial conditions)

SDM-Z: Stochastic-Dynamical model

| with zero (Z) ENSO information with
{observed and CFSv2 initial conditions

SDM-P: Stochastic-Dynamical model
with perfect (P) ENSO information with

10bserved and CFSv2 initial conditions
| SDM-F: Stochastic-Dynamical model

with CFSv2 forecasted (F) ENSO

| information with observed and CFSv2
| iInitial conditions

/hao et al. 2017,
In Review



|OD predictability

Q: How much of 10D predictability originates from ENSO
predictability?

A: Pretty much all of it



ENSO and the Indian Ocean Dipole

Implications

* |OD predictability is determined by (i) ENSO predictability
and (i) the signal-to-noise ration of the system

* our simple ENSO-forced IOD model has better skill in
predicting |OD events compared to operational 10D
forecast systems (full dynamical GCMs)

(;—I = [—Ag + A, €Os (wyt + ;)| T(t) — AN3.4(t) cos (w,t + @, ) + E(1)

 CFSv2 has some skill in predicting ENSO, but no skill in
predicting 10D

o CFSv2 ENSO prediction skill can be translated to |OD
porediction skill via our simple SDM



Summary

Combination mode framework is a powerful tool to study
interactions between modes of climate variability, specitically
seasonally modulated climate phenomena

ENSO controls many regions of the world, however coupled
local processes might need to be taken into account to see
ENSO'’s local climate manifestations (e.g., I0D, East Asian
Monsoon)

Seasonal climate predictions should improve significantly (even
in remote regions beyond the tropical Pacific) once ENSO and
annual cycle biases are reduced in climate models
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Questions?

paper references:
www.maltestuecker.com



http://www.maltestuecker.com

