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Setup

Consider a stochastic process of pairs (Xt ,Yt)
∞
t=1 where

Xt ∈ Rp,Yt ∈ Rq

We will be interested in time series prediction

For a time series (Zt)
∞
t=1, we might be interested in predicting

Yt = Zt using Xt = (Zt−d , . . . ,Zt−1)

Cannot assume that the pairs (Xt ,Yt) are iid
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Lasso

Assume sequence (Xt ,Yt)
T
t=1 is strictly stationary and

centered

Best linear predictor of Yt in terms of Xt

Θ? = arg min
Θ∈Rp×q

E[
∥∥Yt −Θ′Xt

∥∥2

2
].

Collect the Xts and Yts together in two matices:

Y = (Y1,Y2, . . . ,YT )′ ∈ RT×q

X = (X1,X2, . . . ,XT )′ ∈ RT×p

Lasso estimator Θ̂ ∈ Rp×q

Θ̂ = arg min
Θ∈Rp×q

1

T
‖ vec(Y− XΘ)‖2

2 + λT ‖vec(Θ)‖1
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Master Theorem - Informal

(Lower) Restricted Eigenvalue (RE) condition: The empirical
covariance matrix X′X/T has “curvature” in a restricted set
of directions

Deviation Bound (DB) condition: The correlation between
“noise” W and predictors X is small

W = Y− XΘ?

Lasso Master Theorem: Sparsity assumption on Θ? + RE +
DB implies bounds for Lasso
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RE and DB Conditions

Lower Restricted Eigenvalue

Γ ∈ Rp×p satisfies a lower RE with curvature α > 0 and tolerance
τ(T , p) > 0 if

∀v ∈ Rp, v ′Γv ≥ α ‖v‖2
2 − τ(T , p) ‖v‖2

1 .

Deviation Bound

X′W satisfies the DB condition if there exists a deterministic
multiplier function Q(X,W,Θ?) and a rate of decay function
R(p, q,T ) such that,

1

T

∣∣∣∣∣∣X′W∣∣∣∣∣∣∞ ≤ Q(X,W,Θ?)R(p, q,T ).
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Master Theorem - Formal

Theorem (Lasso Estimation and Prediction Errors)

Suppose

1 Θ? is s-sparse

2 Γ̂ := X′X/T satisfies lower RE(α, τ) with α ≥ 32sτ

3 X′W satisfies DB

Then, for any λT ≥ 4Q(X,W,Θ?)R(p, q,T ),∥∥∥Θ̂−Θ?
∥∥∥
F
≤ 4
√
sλT/α,

∣∣∣∣∣∣∣∣∣(Θ̂−Θ?)′Γ̂(Θ̂−Θ?)
∣∣∣∣∣∣∣∣∣2

F
≤

32λ2
T s

α
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RE via Concentration

Consider a fixed vector v ∈ Rp and let ΣX = E[XtX
T
t ]

Use concentration inequality to show

v ′X′Xv

T
− v ′ΣX v =

1

T

T∑
t=1

(X ′tv)2 − E[(X ′tv)2]

is sufficiently small

Take union bound over sparse v
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DB via Concentration

Note that∣∣∣∣∣∣X′W∣∣∣∣∣∣∞ = max
1≤i≤p,1≤j≤q

|[X′W]i ,j | = max
1≤i≤p,1≤j≤q

∣∣(X:i )
′W:j

∣∣
At the population level, there is no correlation between W and
X

E(X:i )
′(Y− XΘ?) = 0,∀i ⇒ E(X:i )

′W:j = 0,∀i , j

Fix i , j and write∣∣(X:i )
′W:j

∣∣ =
∣∣(X:i )

′W:j − E[(X:i )
′W:j ]

∣∣
≤ 1

2

∣∣‖X:i + W:j‖2 − E[‖X:i + W:j‖2]
∣∣

+
1

2

∣∣‖X:i‖2 − E[‖X:i‖2]
∣∣+

1

2

∣∣‖W:j‖2 − E[‖W:j‖2]
∣∣
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Concentration for Subexponential, Independent Case

Theorem (Bernstein’s Inequality)

Let ξ1, · · · , ξT be independent centered sub-exponential random
variables, and K = maxi ‖ξi‖ψ1

. Then for every

a = (a1, · · · , aT ) ∈ RT and every t ≥ 0, we have

P

{∣∣∣∣∣
T∑
i=1

aiξi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

[
−CB min

(
t2

K 2 ‖a‖2
2

,
t

K ‖a‖∞

)]

where CB > 0 is an absolute constant.
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Results for Independent, Subgaussian Case

Bernstein’s concentration inequality will allow us to prove
Lasso guarantees

But it requires independence and subexponential tails

This means independence and subgaussian tails for the
original stochastic process

Fact: A random variable is subgaussian iff its square is
subexponential
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Towards Handling Dependence and Heavy Tails

Time series applications require the ability to deal with
dependence as well as heavier tails

We need ways to quantify dependence and heavy tailed
behavior

Then we need concentration inequalities that hold under
weaker conditions

Next, we quantify dependence using mixing coefficients

Also, we quantify tail behavior using the notion of subweibull
random variables
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β-Mixing

There are several notions of mixing: α-, β-, ρ-, φ-

Let’s focus on β-mixing

Define the coefficient of dependence

β(X ,X ′) = ‖PX ⊗ PX ′ − PX ,X ′‖TV

Given a stationary process Xt , define

β(`) = β(X−∞,t ,Xt+`,∞)

Geometrically beta mixing: Assume β(`) ≤ 2 exp(−c`γ1)
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Subweibull Random Variables and Vectors

We say a r.v. ξ is subweibull(γ2) if there exists K s.t.

P(|ξ| ≥ t) ≤ 2 exp(−(t/K )γ2)

subweibull(2) = subgaussian, subweibull(1) = subexponential

For γ2 < 1, subweibull r.v. is heavy tailed (m.g.f. doesn’t
exist)

A random vector ~ξ is subweibull(γ2) if u′~ξ is subweibull(γ2)
for all unit vectors u (with a common K )
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Subweibull Equivalent Definitions

Theorem (Wong and T., 2017)

Then the following statements are equivalent for every γ2 > 0.
The constants K1,K2,K3 differ from each other at most a constant
depending only on γ2.

1 The tails of ξ satisfies

P (|ξ| > t) ≤ 2 exp {−(t/K1)γ2} , ∀t ≥ 0.

2 The moments of ξ satisfy,

‖ξ‖p := (E|ξ|p)1/p ≤ K2p
1/γ2 , ∀p ≥ 1.

3 The moment generating function of |ξ|γ2 is finite at some
point; i.e., E [exp (|ξ| /K3)γ2 ] ≤ 2
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The Difficulty Landscape

Suppose Xt and Yt are geometrically β-mixing with exponent
γ1

Also suppose they’re both subweibull(γ2)

The pair (γ1, γ2) ∈ R+ quantifies the difficulty of the problem

Easy regime: γ1 →∞ (independence), γ2 →∞ (a.s.
bounded)

Hard regime: γ1 → 0, γ2 → 0

E.g., independent, subgaussian case corresponds to
γ1 =∞, γ2 = 2
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How to Cover the Entire Landscape

Case I: we first handle the subgaussian case with γ1 = 1

Case II: then we handle the case 1/γ1 + 2/γ2 > 1

Together, these two cases handle all γ1, γ2 pairs

{(γ1, γ2) : γ1 ≥ 1, γ2 ≥ 2} ∪ {(γ1, γ2) : 1/γ1+2/γ2 > 1} = R+

Concentration inequality for Case I: extension of Bernstein’s
inequality to β-mixing processes via blocking

Concentration inequality for Case II: Merlevede, Peligrad, Rio
(2011)
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The Blocking Technique

Create blocks from a given β-mixing process Xt

X1,X2, . . . ,XB XB+1,XB+2, . . . ,X2B . . .

Look at, say, even, blocks – they’re separated by B time steps

Yu’s (1994) lemma allows us to create independent blocks

X̃1, X̃2, . . . , X̃B X̃B+1, X̃B+2, . . . , X̃2B . . .

At the same time, for any bounded h,

E[h(even blocks of X )] ≈ E[h(even blocks of X̃ )]
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Case I Result

Case I: γ1 = 1, γ2 = 2

Let ε > 0. For T ≥ T0(ε), w.h.p.

∥∥∥Θ̂−Θ?
∥∥∥
F
≤ C

K 2

λmin(ΣX )

√
s log(pq)

T 1−ε

for some universal constant C

Rate “almost”
√
s log(pq)/T

However, T0(ε) blows up as ε→ 0

K is the subgaussian constant of Xt ,Yt
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Concentration Inequality for Case II

Let (ξi )
T
i=1 be a stationary sequence of zero mean

subweibull(γ2) (with constant K ) r.v.

β-mixing coefficients β(`) ≤ 2 exp(−c`γ1)

Theorem (Wong, T., 2017 based on Merlevede et al., 2011)

Let 1
γ = 1

γ1
+ 1

γ2
. Then for γ < 1, T > 4, and any t > 1/T ,

P

{∣∣∣∣∣
∑T

i=1 ξi
T

∣∣∣∣∣ > t

}
≤ T exp

{
−(tT )γ

KγC1

}
+ exp

{
− t2T

K 2C2

}
where the constants C1,C2 depend only on γ1, γ2 and c .
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Case II Result

Case II: 1/γ = 1/γ1 + 2/γ2, γ < 1

For T ≥ T0(γ), w.h.p.

∥∥∥Θ̂−Θ?
∥∥∥
F
≤ C

K 2

λmin(ΣX )

√
s log(pq)

T

constant C that depends only on γ1, γ2, c

Sample size threshold T0(γ) blows up as γ approaches 0 or 1

K is the subweibull(γ2) constant of Xt ,Yt
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Summary

Need to quantify dependence and tail behavior to extend
Lasso results to time series

We used β-mixing and subweibull exponents to do this

Extended Lasso guarantees to cover the full range of
possibilities for the 2 exponents

Key ingredients are new concentration inequalities
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Future Work

Weaken β-mixing assumption (already have results for
Gaussian processes under α-mixing)

Weaken subweibull assumption to allow even heavier tails

Discrete time series: hard to establish mixing conditions for
these

Lower bounds (and hopefully matching upper bounds)
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