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Background 
and Main 
Objective  



This is the “simplest” inverse problem 

Noise (AWGN) Clean Measured 

Image Denoising: Definition  

 y x e

 

Filter 

An output as  
close as  
possible to  y x



Image Denoising – Can we do More?  

Instead of improving  
image denoising algorithms 
lets seek ways to leverage  

these “engines” in order to solve  
OTHER (INVERSE) PROBLEMS  



Laplacian 
Regularization 

Prior-Art 1: 

[Elmoataz, Lezoray, & Bougleux 2008] [Szlam, Maggioni, & Coifman 2008]   
[Peyre, Bougleux & Cohen 2011] [Milanfar 2013] [Kheradmand & Milanfar 2014]  

[Liu, Zhai, Zhao, Zhai, & Gao 2014] [Haque, Pai, & Govindu 2014] [Romano & Elad  2015]… 



 Often times we can describe our denoiser as a pseudo- 
linear Filter 

 
 True for K-SVD, EPLL, NLM, BM3D and other algorithms,    

where the overall processing is divided into a non-linear     
stage of decisions, followed by a linear filtering 

 

 We may propose an image-adaptive Laplacian: 
 
 
 
 

Pseudo-Linear Denoising 

  Filter x (x)xW

The “residual” 

   (x) x (x)xI W L

   Laplacian x x (x)xW



Laplacian 
Regularization 

Laplacians as Regularization 

 
The problems with this line of work are that: 
 

1. The regularization term is hard to work with since L/W is a function of x. 
This is circumvented by cheating and assuming a fixed W per each iteration 

 

2. If so, what is really the underlying energy that is being minimized?  
 

3. When the denoiser cannot admit a pseudo-linear interpretation  
of W(x)x, this term is not possible to use 

 

 


 T

x
min x,y x x

2
Lℓ 



The Plug-and-Play-Prior 
(P3) Scheme 

Prior-Art 2: 

[Venkatakrishnan, Wohlberg & Bouman, 2013]  



The P3 Scheme 
 Use a denoiser to solve general inverse problems 

 

 Main idea: Use ADMM to minimize the MAP energy 
 
 

      
 The ADMM translates this problem (difficult to solve) 

 into 2 simple sub-problems: 
 

1. Solve a linear system of equations, followed by 
 

2. A denoising step 
 
  

   


  MAP
x

x̂ min x,y x
2

ℓ 



P3 Shortcomings 
 The P3 scheme is an excellent idea, as one can use ANY 

denoiser, even if (⋅) is not known, but… 
  

 Parameter tuning is TOUGH when using a general denoiser 
 This method is tightly tied to ADMM without an option for 

changing this scheme 
 CONVERGENCE ? Unclear (steady-state at best)  
 For an arbitrarily denoiser, no underlying & consistent                  

COST FUNCTION 
 

 In this work we propose an alternative which is closely 
related to the above ideas (both Laplacian regularization 
and P3) which overcomes the mentioned problems: RED 



RED: First Steps  



Regularization by Denoising [RED] 

   T1
x x x x

2
  W



Regularization by Denoising [RED] 

[Romano, Elad & Milanfar, 2016] 

We suggest: 
 

               … for an arbitrary denoiser f(x) 

 x 0   

1. x 0

2. x f x

3. Orthogonality





    T1
x x x f x

2
  



Which f(x) to Use ?  

Almost any algorithm you want may be used     
here, from the simplest Median (see later), all the  

way to the state-of-the-art CNN-like methods 
 

We shall require f(x) to satisfy several  
properties as follows … 



Denoising Filter Property I 

 Differentiability:  

 Some filters obey this requirement (NLM, 
Bilateral, Kernel Regression, TNRD) 

 Others can be -modified  to satisfy this          
(Median, K-SVD, BM3D, EPLL, CNN, …) 

   
n n

f(x): 0,1 0,1



Denoising Filter Property II 

 Local Homogeneity: for                       , we  
have that  

 

Filter 

 

Filter 

=
 

   c 1 1

f(cx) cf(x)

c

c



Denoising Filter Property II 

 Local Homogeneity: for                       , we  
have that  

 

Filter 

 

Filter 

=
 

   c 1 1

f(cx) cf(x)

c

c

Holds for state-of-the-art 
algorithms such as K-SVD, 

NLM, BM3D, EPLL & TNRD... 



Implication (1) 

  Directional Derivative: 

Homogeneity  

 


  
  


x

0

f(x d) f(x)
f x d lim

 
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  
  


x

0

f(x x) f(x)
f x x lim



  


0

(1 )f(x) f(x)
lim f(x)

d x



Looks Familiar ?  

n×n Matrix 

  This is much more general than   
and applies to any denoiser  
satisfying the above conditions   

  We got the property   xf x x f(x)  

f(x) (x)xW



Implication (2) 

  For small 

 

 

 

 
Implication: Filter stability. Small additive 

perturbations of the input don’t change the  
filter matrix   

Directional 
Derivative 

 xf(x h) f(x) f x h   

      x xf x x f x h

     xf x x h

2
h



Denoising Filter Property III 

  Passivity via the spectral radius:  

 

Filter 

         x xr f x max f x 1

Passivity 

x f(x)



Denoising Filter Property III 

  Passivity via the spectral radius:  

 

Filter 

         x xr f x max f x 1

         x xx r f x x f x x f(x)
Holds for state-of-the-art 

algorithms such as K-SVD, NLM, 
BM3D, EPLL & TNRD... 



Summary of Properties 

 The 3 properties that f(x) should follow: 

 

 

 

 

 Why are  
these  
needed? 

  

Differentiability  Homogeneity  Passivity  

 xf x exists f(cx) cf(x)    xr f x 1

Directional 
Derivative   

Filter 
Stability 

        xf x h f x x h   xf x x f(x)

? 



RED: Advancing 



Regularization by Denoising (RED) 

Surprisingly, this expression is differentiable:  

  T1
(x) x x f x

2
  

      T1
(x) x x f x

2

   
1

x f(x) f(x)x
2

 x f(x)

   xf x x f(x)

the residual 

* 

   
2

2

1
(x) x f x

2
* Why not                                 ?  

and Homogeneity 



Passivity guarantees positive  
definiteness of the Hessian  
and hence convexity  

Regularization by Denoising (RED) 

  T1
(x) x x f x

2
  

   (x) x f x

      x(x) f xI

   xr f x 1

Relying on the 
differentiability 

≽ 0 



Regularization L2-based Data Fidelity 

This energy-function is convex 
 

Any reasonable optimization algorithm will get 
to the global minimum if applied correctly 

RED for Linear Inverse Problems 

  
2 T

2x

1
min x y x x f x

2 2


  H



Numerical Approach 

We proposed three ways to minimize this objective 
 

1. Steepest Descent – simple but slow 
2. ADMM – reveals the differences between  

                 the P3 and RED 
3. Fixed Point – the most efficient method  

 

Will are about to concentrate on the last one 

  
2 T

2x

1
min x y x x f x

2 2


  H



Numerical Approach: Fixed Point 

Guaranteed to converge due to the passivity of f(x) 

  
2 T

2x

1
min x y x x f x

2 2


  H

    T x y x f x 0    H H

    T
k 1 k 1 kx y x f x 0     H H

    
1T T

k 1 kx y f x


     H H I H



Numerical Approach III: Fixed Point 

     
1 1T T T

k 1 kx y f x
 

       H H I H H H I

M b 

b 

f(x) k 1x kx M 



A connection to CNN 

 While CNN use a trivial and weak non-
linearity f(●), we propose a very aggressive 
and image-aware denoiser 

 

 Our scheme is guaranteed to minimize a 
clear and relevant objective function 

f(x) M f(x) M 
k 1x kxk 1x 

M f(x)
k 1z  kz

M f(x)
k 1z 

 k 1 kz f z b  M

k 1z  kz



So… Again, Which f(x) to Use ?  

 Almost any algorithm you want may be used     
here, from the simplest Median (see later), all the 
way to the state-of-the-art CNN-like methods 

 
Comment: Our approach has one hidden parameter – the level 

of the noise (σ) the denoiser targets. We simply fix 
this parameter for now. But more work is required to 
investigate its effect  



RED in Practice 



Examples: Deblurring 

Uniform 
9×9 kernel 
and WAGN 

with 2=2 

Ground Truth Input 20.83dB RED+Median 25.87dB 

NCSR 28.39dB P3 +TNRD 28.43dB RED+TNRD 28.82dB 



Examples: 3x Super-Resolution 

Degradation: 
- A Gaussian 7×7 

blur with width 
1.6  

- A 3:1 down-
sampling and 

- WAGN with =5 

Bicubic 20.68dB NCSR 26.79dB 

P3 +TNRD 26.61dB RED+TNRD 27.39dB 



Sensitivity to Parameters  

RED versus P3 P3: Sensitivity to parameter changes  
in the ADMM 



Sensitivity to Parameters  

RED: Robustness to parameter changes 
in the ADMM 

RED: The effect of the  
input noise-level to f(⋅) 



Conclusions 



What Have We Seen Today ? 

 RED – a method to take a denoiser and use it sequentially 
for solving inverse problems  

 

 Main benefits: Clear objective being minimized, Convexity, 
flexibility to use almost any denoiser and any optimization 
scheme 

 

 One could refer to RED as a way to substantiate earlier 
methods (Laplacian-Regularization and the P3) and fix them  

 

 Challenges: Trainable version? Compression? 
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