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Four previous awardees were
my teachers and inspirations

Peter Lax, 1968 Kurt Friedrichs, 1979

Joe Keller, 1983 Jurgen Moser, 1984
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Two spoke on Asymptotics and Applications
I follow their footsteps, speak on same topic

Singular Perturbations in in
Noisy Dynamical Systems

• Asymptotics studies the local behavior of func-
tions

– Functions may be known a-priori

– For some functions we may only have hints
e.g., satisfy DEs + BCs or ICs

– Perturbation Theory

∗ Regular perturbations

∗ Singular perturbations

• Asy series often divergent

• Abel: invention of the devil

• Diff. bet. convergent and asymptotic

• Asymptotic often superior

• Abel comment not relevant
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Regular Perturbation

• Small changes in model lead to
small changes in behavior

• Results little noted nor long remembered

Singular Perturbation (SP)

• Small changes in model lead to
large changes in behavior

• Results deeper and more interesting

• Can occur if perturbation random
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We employ singular perturbation methods
in noisy dynamical systems

• The method of
matched asymptotic expansions (MAE)

The Exit Problem + Applications
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The Exit Problem

• Deterministic dynamical system
perturbed by white noise

– ”Derivative” of Brownian motion

– Brownian motion is nowhere differentiable

• Example: particle in a potential well

– Deterministic problem has a
‘stable equilibrium

– Particle suffers random collisions with
smaller, lighter particles of medium

∗ Particles exit the well

∗ Rare event (not low probability,
low frequency)

Potential well
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Questions

1. How long to exit?
Mean Free Passage Time (MFPT)

2. From where on the boundary (rim)
does exit occur?

• Each quantity satisfies a deterministic BVP
(Kolmogorov backward equation)

•When noise is small, the resulting BVP is a
singular perturbation problem

• Solve the BVP by
singular perturbation methods (MAE)
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L. Prandtl - Boundary Layer Theory

• 1904 Prandtl ICM Talk In Heidelberg
– revolutionized fluid mechanics

• Pre-Prandtl few solutions of Navier Stokes
were known

• Low viscosity flow over solid

– Ignore viscosity away from the boundary

– Consider Euler equations, not Navier Stokes

– Viscosity important only in thin layer near
the boundary (boundary layer) where the
solution varies rapidly

Upon hearing talk, Felix Klein arranged
position in Gottingen, mecca of Math., Sci.

Prandtl undoubtedly great F.M.
flawed human being, apologist for nazi regime

• Boundary layer theory was later generalized
and systematized: Friedrichs, Wasow, MAE;
later by others
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Idea of Matched Asymptotic Expansions

• Outer expansion∑
aj(x)εj

• Stretching Transformation

ξ =
x− x0

εα

x0 layer location, α layer width

• Boundary layer Expansion∑
bj(ξ)εj

rapidly varying

•Matching inner and outer expansion: smooth
connection
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MAE

• Successful for many problems & applications

• Not always - “Failure of MAE”

– Problem exhibits
boundary layer resonance

– “Spurious Solutions”

•MAE not successful on the exit problem

• Caused some to claim ”failure of MAE”

Here we present a physical and four
mathematical arguments which
modify or augment MAE
so it is successful for the Exit Problem

We restrict 1D linear DEs and
limit technical detail
though extensions to higher dims,
limit cycle escape, different noise,
nonlinear problems
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Brownian Motion

• 1827 Robert Brown: Pollen grains in water
agitated, irregular motion

• 1785 Jan Ingenhausz: Carbon dust in
alcohol, less systematic, possible
Stigler Law of Eponomy, which states
”No Discovery Named For
its Original Discoverer”
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Brownian Motion

• 1905 Albert Einstein: Explanation of Brow-
nian motion; 1906 Smoluchowski indepen-
dently same result:

– Motion due to collisions with smaller, lighter
particles in which they’re suspended

– Probabilistic descriptionO(1021) collisions/sec
can’t observe collisions, nor path

– Beginning of stochastic modeling

– Two forces: collisions + viscous drag

– Process is diffusive:

pt = Dpxx, D =
kT

6πηa

collisions modeled by diffusion

– Confirmed existence of atoms
then topic of debate

– 1908 Perrin, later Nobel Prize
experimental confirmation
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• 1908 Langevin
first stochastic differential equation – (SDE)

mẍ + 6πηaẋ + R, D =
kT

6πηa

SDE solution only known statistically.
x is the particle position, and R is a
random force modeling the collisions
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1D Random Walk Collision Model

• Particle at x, jump right r(x), jump left `(x),
no jump 1− r(x)− `(x)

• Jump size ε, jump time δt small

• p(x, y, t) probability to reach x(t) = y given
x(0) = x

•
pτ = L∗p =

ε

2
[(r + `)p]yy − [(r − `)p]y

τ = εt (long time scale)

– hardly any motion on shorter scales

• If r = `, no drift – pure diffusion

pτ = (rp)yy

• Intimate connection between probability &
partial differential equations
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N. Van Kampen asked: Why Do Stochastic Pro-
cesses Enter Physics?

He answers: Many phenomena which evolve
in time in an extremely complicated way, well
beyond the possibility of calculation or obser-
vation, have some average properties that can
be observed and obey simple laws. The use of
probability is justified by our ignorance of the
precise microscopic state. Nevertheless macro-
scopic variables are observable and can be cal-
culated.

• Process goes from y at time s to x at time t

• p(x, t|y, s) satisfies pt = L∗p = dpxx

• p describes the time evolution
of a probability density function
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• x, t forward variables (to where it’s going)
y, s backward variables (from where coming)

• pure Brownian motion pt = L∗p = pxx for-
ward Kolmogorov eq. pt = Lp backward
Kolmogorov eq.

• 1923 Wiener formalized mathematical theory
of Brownian motion

– Wiener process w
“derivative” dw (white noise)

• deterministic dynamical system

ẋ = b(x)

perturbed by small white noise

SDE

dx = b(x)dt +
√

2εdw,

SIE - Ito, Stratonovich
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• Kolmogorov forward operator

L∗p = εpxx − (bp)x

Kolmogorov backward operator

Lp = εpyy + bpy

L,L∗ are adjoints

•We’ll use boundary value problems for Lp to
compute MFPT & distribution of exit points
in the exit problem

• Deterministic force derived from potential

V (x) =
x2

2

force = −V ′ = −x,
D = (−a, b), a, b > 0

small random perturbation (white noise)

•MFPT τ free Brownian particle

Lτ = ετ ′′ = −1 in D

τ = 0 on ∂D
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• Follows from Ito’s formula

dxε = b(xε)dt +
√

2εdw

• f (xε) = f (x) +

∫ t

0
Lfds +

∫ t

0
Mfdw

L is the backward operator,

Mf =
∂f

∂x
, any f

Last term is a stochastic integral

•MFPT satisfies

Lv = εv′′ − xv′ = −1 in D

v = 0 on ∂D

• Set f = v, t = T , T is first passage time to
∂D

v(xε(T )) = v(x)− T +

∫ T

0
Mvdw

Take expectation,
Use E(Stochastic Integral) = 0 and BC
v(x) = τ
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• Similarly, u(x) satisfies

Lu = εu′′ − xu′ = 0 in D

u = φ on ∂D

• Set f = u, t = T ,

u(xε(T )) = u(x) +

∫ T

0
Mudw

E(Stochastic integral) = 0 and BC

u(x) = E(xε(T ))

u(x) =

∫
∂D

φ(y)ρ(x, y)dy

• ρ is probability density of exit points
= Green’s function of Dirichlet problem
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•MFPT for free Brownian particle

τ =
(a + x)(b− x)

ε
algebraically large in ε

• Brownian particle in force field

Lτ = ετ ′′ − xτ ′ = −1 in D

τ = 0 on ∂D

– Can show
τ = O

(
e

1
ε

)
exponentially large in ε

– Takes longer time to
overcome potential barrier
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• Probability distribution of exit points

u(x) =

∫
∂D

φ(y)ρ(x, y)dy

• In our two point boundary value problem

u = P−aα + Pbβ

P−a, Pb probabilities to exit at −a, b

• Use MAE to find
uniform asymptotic solution

– Reduced problem (ε = 0)

– Cannot satisfy both boundary conditions,
boundary layer(s) necessary

u ∼ c0 + (α− c0)e−aξ + (β − c0)e−bη

ξ =
x + a

ε
, η =

b− x
ε

• But what is c0?
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• Uniform expansion consists of outer + BL

– Outer O(1)

– Boundary layer goes from
O(1) to exponentially small

• Appropriate to ask:
enough functions to represent solution?
i.e., enough to span the solution space?

• If not, need to add more functions

• All MAE conditions employed, no answer

• No help from h.o.t.

• Though solution is unique
asymptotic solution not unique

• 1 parameter family of possible
asymptotic solutions,
some called “Spurious solutions”

• Some declared ”Failure Of MAE”

• Goal – Rescue (modify or augment)
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We Present Intuitive Argument
and 4 Mathematical Arguments To Rescue MAE
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Intuitive Argument

• Exit path should be shortest to exit point

– 1 exit point, probability 1

– N exit points, probability 1
N

• Thus,

a < b, c0 = α, P−a = 1, Pb = 0

(No left boundary layer)

b < a, c0 = β, P−a = 0, Pb = 1

(No right boundary layer)

a = b, c0 =
α + β

2
, P−a = Pb =

1

2

(2 boundary layers)

• However, intuition is not conclusive

•We next present 4 different
mathematical arguments to show
these results are correct
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(I): Modify (Matkowsky 1975)

• Replace standard MAE boundary layers

(α− c0)e
−a(x+a)

ε , (β − c0)e
−b(b−x)

ε

by JWKB boundary layer function

A(x)e
φ(x)
ε

• φ satisfies Eikonal equation

(φ′)2 + xφ′ = 0

• A satisfies transport equation

xA′ + A = 0

• Two solutions

φ′ = 0, (outer)

φ′ = −x
so φ = K2−x2

2

– φ quadratic - not linear

– Want φ ≥ 0, φ = 0 at boundaries

– Choose K = max(a, b)
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• A(x) =
a0

x
, a0 constant

• Note:

φ→ a(x + a) as x→ −a,
φ→ b(b− x) as x→ b

reduces to standard MAE construction

• Note: single boundary layer function describes
multiple boundary layers

• Note: apparent singularity gone, no effect
outside boundary layers & using Friedrichs
mollifier

• Results same as intuitive argument
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(II): Augment (Grasman, Matkowsky 1977)

• Introduce variational problem whose
Euler Lagrange equation is given DE

• Use MAE family as admissable functions

• Set first variation to zero

• Same result as intuitive & (I)
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(III): Augment (Matkowsky, Schuss 1977)

• Replace variational condition
by orthogonality condition

• (ps, Lu) = 0, (f, g) =

∫ b

−a
fgdx

• Stationary Kolmogorov forward equation

L∗ps = 0

so ps = Ce−
x2

2ε , C normalization constant

• Variational condition (Ritz)

• Orthogonality condition (Galerkin)

• Same result as intuitive, (I), (II)
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(IV): Augment (Chapman, Matkowsky 2013)

• Asymptotics beyond all orders,
aka exponential asymptotics

• Reason: unable to determine c0.
Not enough terms in outer expansion to span
solution space

• Add exponentially small terms to outer ex-
pansion (construct by JWKB)

c0 =
aαe

−a2

2ε + bβe
−b2
2ε

ae
−a2
2ε + be

−b2
2ε

.

• Consider the 3 cases

1. a < b → c0 = α

2. a > b → c0 = β

3. a = b → c0 = α+β
2

• Same result as intuitive & (I) (II) (III)
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• Again apparent singularity gone as before

– No effect on interior

– Only important to match boundary layer

• Solution should depend continuously on data

– Does not: discontinuous at a = b

• Reason: only considered b− a = O(1)

• Now consider b− a = εd

c0 =
α + e−ad

1 + e−ad

d→∞, c0→ α, d→ −∞, c0→ β,

d = 0, c0 = α+β
2

• Solution depends continuously on data
& bridges gap between results

• Result indicates exit doesn’t occur
at isolated value c0 = α+β

2 ,
but in a thin layer about that value

30



KRAMERS MODEL OF CHEMICAL
REACTION RATES
BROWNIAN PARTICLE IN FIELD OF FORCE

1940 KRAMERS: FIELD = POTENTIAL WELL

REACTION OCCURS WHEN PARTICLE
OVERCOMES POTENTIAL BARRIER
E = HT. OF WELL, κ = RATE

κ = 1
2τ

τ is MFPT

FACTOR 1/2; AFTER REACHING RIM
EQUALLY LIKELY TO EXIT-RETURN

ARRHENIUS LAW

κ = Ae−
E
kT

E=V(b)-V(a)=ACTIVATION ENERGY, T=TEMP
A=PREEXPONENTIAL FACTOR

MERELY STATES τ is O(e
1
ε) ε = kT

E
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κ INCREASES WITH T
MILK SOURS FASTER IN ROOM THAN FRIDGE

SIMILAR APPLICATIONS IN:
ATOMIC MIGRATION IN CRYSTALS
IONIC CONDUCTIVITY IN CRYSTALS
TRANSITIONS BET. EQUIL. STATES
IN JOSEPHSON JUNCTIONS
TO NAME BUT A FEW

κ EMPLOYED IN

dC
dt = −κC

C = CONCENTRATION OF
REACTION COMPONENT
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DIFFUSION APPROXIMATION IN
NEUTRON TRANSPORT THEORY

ABOVE, CONSIDERED SP
IN NOISY SYSTEMS
NOISE MODELED COLLISIONS
BY DIFFUSION
NOW, CONSIDER SP FOR SYSTEM
NOT MODELED BY NOISE
YET, DIFFUSION EQ. RESULTS

NEUTRON TRANSPORT THEORY
STUDIES NEUTRON POPULATIONS
NEUTRONS MAY COLLIDE, ANNIHILATED
NEW NEUTRONS BORN BY FISSION
IMPT IN NUCLEAR REACTOR DESIGN

MODEL IS LINEAR
INTEGRODIFFERENTIAL EQ (LBE)
FEW SOLUTIONS AVAILABLE
DESIRE SIMPLER MODEL
AMENABLE TO ANALYSIS
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DIFFUSION ”APPROXIMATIONS”
PREVIOUS ATTEMPTS UNSATISFACTORY
WE USE SP FOR DIFFUSION APPROX.

NUCLEAR AGE BEGAN WITH
1932: CHADWICK DISCOVERED NEUTRONS
1939: 1939: HAHN, MEITNER -FISSION
1942: FERMI et. al. - NUCLEAR REACTOR

MANY NEUTRONS, O(107) - CONTINUUM
FAR MORE NUCLEI O(1023) IN MEDIUM,
ONLY NEUTRON-NUCLEAR INTERACTION
LINEAR INTEGRODIFFERENTIAL EQ (LBE)

COLLISIONS CHANGE
µ→ µ′

µ = cosθ
FISSION, LARGE ENERGY RELEASED
ENERGY USED GENERATE ELECTRICITY
LINEAR BOLTZMANN EQ (LBE)
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1

v
Ψτ+µΨx+σ(x)Ψ−σ(x)c(x)

2

∫ 1

−1
Ψ(x, µ′, τ )dµ′ = 0, 0 < x < d,−1 ≤ µ ≤ 1, τ > 0,

BOUNDARY CONDITIONS

Ψ(x = 0) = f1(µ, τ ) for µ > 0

Ψ(x = d) = f2(µ, τ ) for µ < 0,

+ INITIAL CONDITION.
Ψ(x, µ, τ ) IS NEUTRON DISTRIBUTION FCTN
IN SLAB GEOMETRY,
PROBABLE NUMBER NEUTRONS AT x, τ ,
TRAVELING AT CONST SPEED v
IN DIRECTION µ = cosθ,
θ IS ANGLE v MAKES WITH HORIZONTAL
σ(x) IS SCATTERING CROSS SECTION,
PROB. THAT NEUTRON INCIDENT ON
NUCLEUS RESULTS IN SCATTERING EVENT
(DIRECTION CHANGES µ′ to µ)
AVG. INVERSELY PROPORTIONAL TO
MEAN FREE PATH l,
AVG. DIST.TRAVELED BET. COLLISIONS.
c(x) AVG. # SECONDARY NEUTRONS BORN
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c = 1 (critical) NEUTRON POPULATION
JUST SUSTAINED
c > 1 (c < 1)
SUPERCRITICAL (SUBCRITICAL),
NEUTRON POPULATION GROWS (DECAYS)
TO CONTROL NEUTRON GROWTH (SAFETY)
CONTROL RODS INSERTED
(ABSORB NEUTRONS).
v MICROSCOPIC VELOCITY

COMPLICATIONS
1/2 BC AT EACH BDRY
PRESCRIBE INCOMING, NOT OUTGOING
CONTINUOUS SPECTRUM
FEW SOLUTIONS KNOWN
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DESIRE SIMPLER MODELS
FOR REACTOR DESIGN
MORE AMENABLE TO ANALYSIS
DIFFUSION ”APPROXIMATION”
WIDELY USED

PREVIOUS ATTEMPTS
P1 DIFF., ASY DIFF.
P1 DIFFUSION
EXPAND IN LEGENDRE POLYNOMIALS Pn(µ)
TRUNCATE AFTERN TERMS; PN APPROX
IF N SUFF LARGE, CONVERGENCE
TRUNCATE AFTER 2 TERMS
GET DIFFUSION ”APPROX”
Q: WHY ”APPROX” VALID?

ASY DIFFUSION
REPLACE FINITE BY INFINITE DOMAIN
REPLACE VARIABLE BY CONST COEFFS
CONSIDER SOLUTION AT INFINITY
GET DIFFUSION ”APPROX”
Q: WHY ”APPROX” VALID?
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DIFFUSION EQS HAVE
DIFFERENT COEFFICIENTS
CLOSE IF c ∼ 1 (NEAR CRITICAL)

DIFFERENT BCS POSTULATED, NOT
DERIVED e.g., MARSHAK, MARK

TO MAKE SENSE AS APPROXIMATION
MUST BE ABLE TO ANSWER 4 QUESTIONS
IN WHAT SENSE APPROX?
CONDITIONS FOR VALIDITY?
HOW GOOD IS APPROX?
HOW PROVIDE CORRECTIONS
(IMPROVEMENT)?

WE ACTUALLY DERIVE
A DIFFUSION APPROXIMATION
AND ANSWER THESE QUESTIONS
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RATHER THAN STOCHASTIC APPROACH
WE EMPLOY SCALING
ELEMENTARY CALCULUS, SP (MAE)

NONDIMENSIONALIZATION

y ≡ x

d
, t ≡ v̄τ

d
,

v̄ REFERENCE MACROSCOPIC VELOCITY,
NONDIM. SCATTERING CROSS SECTION

a(y) =
σ

σ̄
,

σ̄ REF. SCATTERING CROSS SECTION.
INTRODUCES SMALL PARAMETERS

ε ≡ l

d
� 1, δ ≡ v̄

v
� 1,

FORMER
MEAN FREE PATH l <<TYPICAL MACRO-
SCOPIC LENGTH,
e.g., SIZE OF REACTOR
LATTER
MACRO VELOCITY<<MICRO VELOCITY.
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Ψ→ ψ

DEFINITIONS IMPLY
t = εδτ , LONG TIME SCALE.
ASSUME
ε, δ SAME ORDER
SET ε = δ, TO GET

ε2ψt+εµψy+a(y)ψ−a(y)c(y, ε)

∫ 1

−1
ψdµ

′
= 0.

EQUATION CLEARLY SP TYPE.
EXPAND BOTH ψ, c IN
ASYMPTOTIC SERIES IN ε

ψ ∼
∑
n

ψn(y, t, µ)εn, c ∼
∑
n

cn(y)εn

FOR THE OUTER EXPANSION TO BE
VALID IN INTERIOR OF DOMAIN
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BCs OBTAINED BY MATCHING
TO BL EXPANSION

EQUATING COEFF OF EACH
POWER OF ε TO ZERO
OBTAIN RECURSIVE EQs FOR COEFFs

Lψ0 ≡ a[ψ0 − c0

2

∫ 1

−1
ψ0dµ′] = 0,

LEARN ψ0 IND. OF µ, ψ0 = ψ0(x, t)), c0 = 1

Lψ1 = −ψ0
y +

ac1

2

∫ 1

−1
ψ0dµ′

LEARN ψ1 LINEAR IN µ, c1 = 0

Lψ2 = −ψ1
y+
ac2

2

∫ 1

−1
ψ0dµ′+

ac1

2

∫ 1

−1
ψ1dµ′−ψ0

t .

LEARN ψ2 QUADRATIC IN µ
RELATIONS BET. COEFFS

COLLECTING RESULTS GET

41



DIFFUSION EQUATION

ψ0
t = (

1

3a
ψ0
y)y + ac2ψ

0.

NOTE ANGULAR DEPENDENCE (µ)
DERIVED, NOT ASSUMED AS IN
P1 DIFFUSION APPROXIMATION.
c2 < 0 (SUBCRITICAL)
SOLUTION DECAYS TO 0,
BOTH R.H.S. TERMS NEGATIVE
REACTION NOT SUSTAINED
c2 > 0 (SUPERCRITICAL)
REACTION CAN BE SUSTAINED

TO COMPLETE DERIVATION , MUST SOLVE
BL PROBLEM NEAR EACH BOUNDARY
THEN, MATCH BL TO OUTER EXPANSION,
TO GET BCs FOR DIFFUSION EQUATION.
WE DON’T CARRY THIS OUT,
INVOLVES TOO MUCH DETAIL
cf. HABETLER, MATKOWSKY PAPER
FOR BL ANALYSIS AND MATCHING
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WE SUCCESSFULLY ANSWERED QUESTIONS
Q: IN WHAT SENSE
IS APPROXIMATION APPROXIMATE?
A: AN ASYMPTOTIC APPROXIMATION .
Q: WHEN IS IT VALID?
A: WHEN ε IS SMALL
i.e., WHEN MEAN FREE PATH << THAN
TYPICAL MACROSCOPIC LENGTH,
e.g., THE SIZE OF THE DOMAIN
Q: HOW GOOD IS THE APPROXIMATION?
A: ERROR IS O(ε)
Q: HOW TO IMPROVE APPROXIMATION?
A: INCLUDE HIGHER ORDER TERMS.

NO INITIAL LAYER ANALYSIS NEEDED
MODEL NOT VALID FOR EARLY TIMES
(STARTUP)
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