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The Robin problem
Find β(x) on inaccessible part of domain from noisy measurements of u on
accessible part of domain

−∆u(x) = 0 in Ω,
∇u(x) · nt = g(x) on Γt

∇u(x) · nb + eβ(x)u(x) = 0 on Γb

u(x) = 0 on Γs,

(1)

x3

x2

x1
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The Robin problem revised
Find β(x) on inaccessible part of domain from noisy measurements of u on
accessible part of domain without knowing a(x)

−∇ · (ea(x)∇u(x)) = 0 in Ω,
ea(x)∇u(x) · nt = g(x) on Γt

ea(x)∇u(x) · nb + eβ(x)u(x) = 0 on Γb

u(x) = 0 on Γs.

(2)

x3

x2

x1
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The Bayesian View of Inverse Problems
Inverse problem1: With observed data, d, and parameter to observable
map f , find β given

d = f(β,a) + e

1 All unknowns are taken to be random variables.
2 Solution to the inverse problem is posterior probability density.

πpost(β) = π(β|d) = πpr(β)πli(d|β)
π(d) ∝ πpr(β)πli(d|β)

πpr(β) πli(dobs|β) πpost(x)

1Details in for example: J. Kaipio, E. Somersalo, Statistical and Computational
Inverse Problems, Springer, 2005
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The MAP Estimate

The maximum a posteriori estimate: The point in parameter
space that maximises the posterior probability density function
Gaussian prior, mean β∗ and covariance Γβ = (ATA)−1

Additive Gaussian noise in the measurements, e ∼ N (0,Γe), then the
posterior density is2

πpost(β) ∝ exp
{
−1

2
(
‖f(β,a)− d‖2Γ−1

e
+ ‖A (β − β∗)‖

2
)}

and

βMAP := arg min
β∈Rn

{1
2
(
‖f(β,a)− d‖2Γ−1

e
+ ‖A (β − β∗)‖

2
)}

2Details in for example: J. Kaipio, E. Somersalo, Statistical and Computational
Inverse Problems, Springer, 2005
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Prior Densities

We employ a weighted squared inverse elliptic operator as our prior
covariance operator3:
A = KG−1 where

Kij = α

∫
Γb

(γ∇φi · ∇φj + φiφj) dx +
∫
∂Γb

κφiφj ds,

Gij = 4πγα2
√
K−1
ij δij , i, j ∈ {1, 2, . . . , n},

with α > 0, γ > 0 and κ ≥ 0 controlling variance and correlation
structure, and δij is the Kronecker delta.

Other approaches include use of Aristotelian boundary conditions4

3Details in: Y. Daon, G. Stadler, Mitigating the influence of the boundary on
PDE-based covariance operators, Inverse Problems and Imaging, 2017

4Details in: D. Calvetti, J. Kaipio, E. Someralo, Aristotelian prior boundary
conditions, International Journal of Mathematics and Computer Science, 2006
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Model Discrepancy and the BAE Approach

The Bayesian approximation error5 (BAE) approach has been used to
account for uncertainties and discrepancies in many models.
Ingredients:

1 Let f(β,a) an accurate forward problem
2 Let ga∗(β) a coarse/approximative forward problem with

auxiliary/nuisance parameter(s) a set to a∗.
Notice,

d = f(β,a) + e = ga∗(β) + e+
(
f(β,a)− ga∗(β)

)
= ga∗(β) + e+ ε(β) = ga∗(β) + ν(β),

ε(β): Approximation errors accounts for model discrepancies
ν(β): Total errors accounts for all errors

5Introduced in: J. Kaipio, E. Somersalo, Statistical and Computational Inverse
Problems, Springer, 2005
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Calculating the statistics of ε(β)
ε(β) = f(β,a)− ga∗(β)

In general cannot be computed analytically
Gaussian approximation of π(ε,β)
Approximate ε and β as uncorrelated → enhanced error model6

Total error is then Gaussian with ν ∼ N (ε∗,Γe + Γε)
To calculate ε∗ and Γε (done offline):

Generate r samples from π(β,a)
Compute ε(`) = f(β(`),a(`))− ga∗(β(`)), ` = 1, 2, , . . . , r
Calculate

ε∗ = 1
r

r∑
`=1
ε(`) and Γε = 1

r − 1

r∑
`=1

(ε(`) − ε∗)(ε(`) − ε∗)T

6Details in for example: J. Kaipio, V. Kolehmainen, Approximate marginalization
over modelling errors and uncertainties in inverse problems, Bayesian Theory and
Applications, 2013
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What Have we Accomplished?
An updated likelihood
⇒An updated MAP estimate:

βBAE
MAP := arg min

β∈Rn
{J (β)}

with

J (β) = 1
2
(∥∥ga∗(β)− d + ν∗

∥∥2
Γ−1
ν

+ ‖A (β − β∗)‖
2
)

= 1
2
(
‖Bu− d + ν∗‖2Γ−1

ν
+ ‖A (β − β∗)‖

2
)

B is the observation operator, and u is the FEM solution to the forward
problem

−∇ · (ea∗∇u(x)) = 0 in Ω,
ea∗∇u(x) · nt = g(x) on Γt

ea∗∇u(x) · nb + eβ(x)u(x) = 0 on Γb

u(x) = 0 on Γs.
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Methods for Inversion

Use an inexact CG adjoint-based Gauss-Newton method
Set up Lagrangian functional L : V × V × E → R is

L(u, p, β) := J +
∫

Ω
ea∗∇u · ∇p dx−

∫
Γt
gp dst +

∫
Γb
eβup dsb,

Gradient of J found by requiring variations of L with respect to the
forward potential u and the adjoint potential p vanish
Results in following strong form of gradient G,

G(β) := A2 (β − β∗) + eβup

where u satisfies the forward problem, and p satisfies the adjoint
Poisson problem for given u and β:
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Methods for Inversion

The adjoint Poisson problem:

−∇ · (ea∗∇p(x)) = −B∗Γ−1
ν (Bu(x)− d + ν∗) in Ω,

ea∗∇p(x) · nt = 0 on Γt,

ea∗∇p(x) · nb + eβ(x)p(x) = 0 on Γb,

p(x) = 0 on Γs,

Action of the Gauss-Newton approximation of the Hessian operator
evaluated at β in the direction β̂ is given by

H(β)(β̂) := A2β̂ + eβ β̂up̂

where p̂ satisfies the incremental adjoint Poisson problem and û satisfies the
incremental forward Poisson problem
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Methods for Inversion

The incremental adjoint Poisson problem

−∇ · (ea∗∇p̂(x)) = −B∗Γ−1
ν Bû(x) in Ω

ea∗∇p̂(x) · nt = 0 on Γt

ea∗∇p̂(x) · nb + eβ(x)p̂(x) = 0 on Γb,

p̂(x) = 0 on Γs,

The incremental forward Poisson problem

−∇ · (ea∗∇û(x)) = 0 in Ω
ea∗∇û(x) · nt = 0 on Γt

ea∗∇û(x) · nb + eβ(x)û(x) = −β̂eβ(x)u(x) on Γb,

û(x) = 0 on Γs.
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Methods for Inversion

The resulting system to be solved (inexactly using CG) for the
Gauss-Newton search direction, β̂, is

H(β)(β̂) = −G(β).

For joint inversion7 we would also need to solve

Ha(a)(â) = −Ga(a)

for â, with

Ga(a) := A2
a (a− a∗) + ea∇u · ∇p

Ha(a)(â) := A2
aâ+ eaâ∇u · ∇p̂

7Such an approach was used in an ice sheet problem, details in N. Petra et al., An
inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a
nonlinear Stokes ice sheet model, Journal of Glaciology, 2012
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Computational Examples Set Up

Domain Ω = [0, 1]× [0, 1]× [0, 0.01]
33 point measurements on the top of the domain
Avoid inverse crimes by using finer FEM discretisation to generate
data than for inversions

Mesh use #Nodes #Els #Param
Example 1

Data synthesis 28,611 150,000 2,601
Inversion 6,727 32,400 961

Example 2
Data synthesis 132,651 750,000 2,601
Inversion 29,791 162,000 961

1% noise added to measurements: Γe = δ2
eI.
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Prior for β

Covariance set by using α = 7, γ = 0.01 and κ = 0
Recall, Γβ = (ATA)−1, with A = KG−1 where

Kij = α

∫
Γb

(γ∇φi · ∇φj + φiφj) dx +
∫
∂Γb

κφiφj ds,

and G−1 effectively homogenises the variance of the prior.

Figure: spatial variance of β for different boundary conditions

Ru Nicholson (U o Auckland) BAE approach to the Robin problem February, 2019 16 / 30



Prior for β

Prior mean set as β∗ = 1
Same prior for β and true value, βtrue used for both numerical
examples

Figure: Three draws from πpr(β) and βtrue
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Example One: The Isotropic Case

Mean and Covariance set using a∗ = 0, αa = 100, γa = 0.001
With Γa = (AT

aAa)−1, with Aa = K where

Kij = αa

∫
Ω

(γa∇φi · ∇φj + φiφj) dx

Figure: Three draws from πpr(a) and atrue
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Approximation Errors for Example One

r = 1000 samples drawn to calculate ε∗ and Γε.
Some components of Γε are ≈ 100× larger than those in Γe
Perhaps more important: Structured noise

Figure: Statistics of the measurement errors and the approximation errors
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Results for Example One
Results are compared for for the following

Reference case: use the correct value of a in the model
Conventional error case: neglect approximation errors
BAE case: take into account approximation errors

Figure: βtrue, reference MAP, conventional error MAP, BAE MAP
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Results for Example One

Figure: Prior and posterior variance: reference, conventional error, BAE
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Example Two: The Anisotropic Case

Mean and Covariance set using a∗ = 0, αa = 100,
γa = diag(10−2, 10−2, 10−8)
With Γa = (AT

aAa)−1, with Aa = K where

Kij = αa

∫
Ω

(γa∇φi · ∇φj + φiφj) dx

Figure: Three draws from πpr(a) and atrue
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Approximation Errors for Example Two

Again, r = 1000 samples drawn to calculate ε∗ and Γε.
Some components of Γε are > 100× larger than those in Γe
We have: Structured noise

Figure: Statistics of the measurement errors and the approximation errors
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Results for Example Two
Results are compared for for the following

Reference case: use the correct value of a in the model
Conventional error case: neglect approximation errors
BAE case: take into account approximation errors

Figure: βtrue, reference MAP, conventional error MAP, BAE MAP
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Results for Example Two

Figure: Prior and posterior variance: reference, conventional error, BAE
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Computational Costs

Gauss-Newton terminated when norm of gradient decreased by factor
of 107

CG iterations are terminated using Eisenstat-Walker condition

MAP #GN #CG avg.CG #back #Poisson
Example 1

REF 8 117 15 0 250
CEM 11 101 10 4 228
BAE 5 57 12 0 124

Example 2
REF 6 54 9 0 120
CEM 8 95 12 0 206
BAE 5 97 20 0 204

Ru Nicholson (U o Auckland) BAE approach to the Robin problem February, 2019 26 / 30



Current & Future Work: The Ice Sheet Problem
Consider the incompressible Stokes equations8

−∇ · σu = ρg x ∈ Ω,
∇ · u = 0 x ∈ Ω,

(3)

Basal sliding coefficient β
Glen’s flow-law exponent parameter n: Determines (non-)linearity

σu = −pI + 2η(u,n)ε̇ Cauchy stress tensor

η(u,n) = 1
2A
− 1
n

(
ε̇‖(u) + ε

) 1−n
2n Effective viscosity

ε̇(u) = 1
2
(
∇u+∇uT

)
Strain rate tensor

ε̇‖(u) = 1
2 ε̇(u) : ε̇(u) Second invariant

8See for example N. Petra et al., An inexact Gauss-Newton method for inversion of
basal sliding and rheology parameters in a nonlinear Stokes ice sheet model, Journal of
Glaciology, 2012
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The Ice Sheet Problem

u|Γl
= u|Γr

and σun|Γl
= σun|Γr

x ∈ Γp
σun = 0 x ∈ Γt
u · n = 0 x ∈ Γb

Tσun+ eβTu = 0 x ∈ Γb,

(4)

∫
Ω

2η(u,n)ε̇(u) : ε̇(v)− p∇ · v − q∇ · u dx+
∫

Γb

eβTu · Tv ds =
∫

Ω
ρg · v dx

x3

x2

x1
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The Ice Sheet Problem

Replace nonlinear Stokes model with linear counterpart 9

f(β,n) = gn∗(β) + ε(β), n∗ = 1

Figure: Nonlinear (left) and Linear (right) velocities for same βtrue,

9See R. Nicholson, O. Babaniyi, N. Petra, Incorporating model discrepancy stemming
from uncertain rheology in an inverse ice sheet flow problem, in preperation
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Summary
Conclusions:

The Bayesian approximation error (BAE) approach allows use of
simpler forward model while premarginalising over auxilliary
parameters
Consequential model discrepancy dealt with systematically.
BAE approach results in an updated likelihood which fits in naturally
to the existing framework.
Neglecting model discrepancy can lead to infeasible results.
Robin problem details in R. Nicholson, N. Petra, J. Kaipio, Estimation
of the Robin coefficient field in a Poisson problem with uncertain
conductivity field, Inverse Problems 34 (11) 2018
Ice sheet problem details in R. Nicholson, O. Babaniyi, N. Petra,
Incorporating model discrepancy stemming from uncertain rheology in
an inverse ice sheet flow problem, in preperation
Thank you
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