Use of the Bayesian Approximation Error Approach to Account for Model Discrepancy: The Robin Problem Revisited

Ruanui (Ru) Nicholson¹

Joint work with: Noémi Petra², Olalekan Babaniyi ², Jari Kaipio³

¹Department of Engineering Science, University of Auckland ²School of Natural Sciences, University of California, Merced ³Department of Mathematics, University of Auckland

SIAM CSE19

Motivation

- 2 Inverse Problems in the Bayesian Framework
- Model discrepancy and the Bayesian approximation error (BAE) approach
- 4 Recovery of the Robin coefficient
- **5** Numerical Examples
- 6 Current & Future Work
 - 7 Conclusion and Discussion

The Robin problem

Find $\beta(x)$ on inaccessible part of domain from noisy measurements of u on accessible part of domain

$$\begin{split} -\Delta u(\boldsymbol{x}) &= 0 & \text{in } \Omega, \\ \nabla u(\boldsymbol{x}) \cdot \boldsymbol{n}_{\text{t}} &= g(\boldsymbol{x}) & \text{on } \Gamma_{\text{t}} \\ \nabla u(\boldsymbol{x}) \cdot \boldsymbol{n}_{\text{b}} &+ e^{\boldsymbol{\beta}(\boldsymbol{x})} u(\boldsymbol{x}) &= 0 & \text{on } \Gamma_{\text{b}} \\ u(\boldsymbol{x}) &= 0 & \text{on } \Gamma_{\text{s}}, \end{split}$$

(1)

The Robin problem revised

Find $\beta(x)$ on inaccessible part of domain from noisy measurements of u on accessible part of domain without knowing a(x)

$$-\nabla \cdot (e^{a(\boldsymbol{x})} \nabla u(\boldsymbol{x})) = 0 \qquad \text{ in } \Omega,$$

$$e^{oldsymbol{a}(oldsymbol{x})}
abla u(oldsymbol{x})\cdotoldsymbol{n}_{ ext{t}}=g(oldsymbol{x})\qquad ext{on }\Gamma_{ ext{t}}$$

$$e^{oldsymbol{a}(oldsymbol{x})}
abla u(oldsymbol{x}) \cdot oldsymbol{n}_{
m b} + e^{eta(oldsymbol{x})}u(oldsymbol{x}) = 0$$
 on $\Gamma_{
m b}$

$$u({m x})=0$$
 on $\Gamma_{\!
m s}.$

(2)

The Bayesian View of Inverse Problems

Inverse problem¹: With observed data, d, and parameter to observable map f, find β given

 $d = f(\beta, a) + e$

- All unknowns are taken to be random variables.
- Solution to the inverse problem is posterior probability density.

¹Details in for example: J. Kaipio, E. Somersalo, *Statistical and Computational Inverse Problems*, Springer, 2005

The MAP Estimate

- The maximum a posteriori estimate: The point in parameter space that maximises the posterior probability density function
- Gaussian prior, mean $oldsymbol{eta}_*$ and covariance $oldsymbol{\Gamma}_eta=(oldsymbol{A}^Toldsymbol{A})^{-1}$
- Additive Gaussian noise in the measurements, $e \sim \mathcal{N}(\mathbf{0}, \Gamma_e)$, then the posterior density is²

$$\pi_{ ext{post}}(oldsymbol{eta}) \propto \exp\left\{-rac{1}{2}\left(\|oldsymbol{f}(oldsymbol{eta},oldsymbol{a}) - oldsymbol{d}\|_{\mathbf{\Gamma}_{ ext{e}}^{-1}}^2 + \|\mathbf{A}\,(oldsymbol{eta} - oldsymbol{eta}_*)\|^2
ight)
ight\}$$

and

$$oldsymbol{eta}_{ ext{MAP}} := rg\min_{oldsymbol{eta} \in \mathbb{R}^n} \left\{ rac{1}{2} \left(\|oldsymbol{f}(oldsymbol{eta},oldsymbol{a}) - oldsymbol{d}\|_{oldsymbol{\Gamma}_{ ext{e}}^{-1}}^2 + \|oldsymbol{A}\,(oldsymbol{eta} - oldsymbol{eta}_*)\|^2
ight)
ight\}$$

²Details in for example: J. Kaipio, E. Somersalo, *Statistical and Computational Inverse Problems*, Springer, 2005

We employ a *weighted* squared inverse elliptic operator as our prior covariance operator³:

 $A = KG^{-1}$ where

$$K_{ij} = \alpha \int_{\Gamma_{\rm b}} (\gamma \nabla \phi_i \cdot \nabla \phi_j + \phi_i \phi_j) \, d\mathbf{x} + \int_{\partial \Gamma_{\rm b}} \kappa \phi_i \phi_j \, d\mathbf{s},$$
$$G_{ij} = 4\pi \gamma \alpha^2 \sqrt{K_{ij}^{-1}} \delta_{ij}, \quad i, j \in \{1, 2, \dots, n\},$$

with $\alpha > 0$, $\gamma > 0$ and $\kappa \ge 0$ controlling variance and correlation structure, and δ_{ij} is the Kronecker delta.

• Other approaches include use of Aristotelian boundary conditions⁴

³Details in: Y. Daon, G. Stadler, *Mitigating the influence of the boundary on PDE-based covariance operators*, Inverse Problems and Imaging, 2017 ⁴Details in: D. Calvetti, J. Kaipio, E. Someralo, *Aristotelian prior boundary*

conditions, International Journal of Mathematics and Computer Science, 2006

Model Discrepancy and the BAE Approach

The Bayesian approximation error⁵ (BAE) approach has been used to account for uncertainties and discrepancies in many models. **Ingredients:**

- $\textcircled{0} \hspace{0.1 in} \text{Let} \hspace{0.1 in} \boldsymbol{f}(\boldsymbol{\beta}, \boldsymbol{a}) \hspace{0.1 in} \text{an} \hspace{0.1 in} \textbf{accurate} \hspace{0.1 in} \text{forward} \hspace{0.1 in} \text{problem}$
- 2 Let g_{a_{*}}(β) a coarse/approximative forward problem with auxiliary/nuisance parameter(s) a set to a_{*}.

Notice,

$$\begin{split} \boldsymbol{d} &= \boldsymbol{f}(\boldsymbol{\beta}, \boldsymbol{a}) + \boldsymbol{e} = \boldsymbol{g}_{a_*}(\boldsymbol{\beta}) + \boldsymbol{e} + \left(\boldsymbol{f}(\boldsymbol{\beta}, \boldsymbol{a}) - \boldsymbol{g}_{a_*}(\boldsymbol{\beta})\right) \\ &= \boldsymbol{g}_{a_*}(\boldsymbol{\beta}) + \boldsymbol{e} + \boldsymbol{\varepsilon}(\boldsymbol{\beta}) = \boldsymbol{g}_{a_*}(\boldsymbol{\beta}) + \boldsymbol{\nu}(\boldsymbol{\beta}), \end{split}$$

ε(β): Approximation errors accounts for model discrepancies
 ν(β): Total errors accounts for all errors

⁵Introduced in: J. Kaipio, E. Somersalo, *Statistical and Computational Inverse Problems*, Springer, 2005

Calculating the statistics of $\varepsilon(\beta)$

 $\boldsymbol{\varepsilon}(\boldsymbol{\beta}) = \boldsymbol{f}(\boldsymbol{\beta}, \boldsymbol{a}) - \boldsymbol{g}_{a_*}(\boldsymbol{\beta})$

- In general cannot be computed analytically
- Gaussian approximation of $\pi(\boldsymbol{\varepsilon},\boldsymbol{\beta})$
- Approximate arepsilon and eta as uncorrelated ightarrow enhanced error model⁶
- Total error is then Gaussian with $\pmb{\nu}\sim \mathcal{N}(\pmb{\varepsilon}_*,\pmb{\Gamma}_e+\pmb{\Gamma}_\varepsilon)$

To calculate ε_* and Γ_{ε} (done *offline*):

- Generate r samples from $\pi(\boldsymbol{\beta}, \boldsymbol{a})$
- Compute $\boldsymbol{\varepsilon}^{(\ell)} = \boldsymbol{f}(\boldsymbol{\beta}^{(\ell)}, \boldsymbol{a}^{(\ell)}) \boldsymbol{g}_{a_*}(\boldsymbol{\beta}^{(\ell)})$, $\ell = 1, 2, \ldots, r$

Calculate

$$\boldsymbol{\varepsilon}_* = \frac{1}{r} \sum_{\ell=1}^r \boldsymbol{\varepsilon}^{(\ell)} \quad \text{and} \quad \boldsymbol{\Gamma}_{\boldsymbol{\varepsilon}} = \frac{1}{r-1} \sum_{\ell=1}^r (\boldsymbol{\varepsilon}^{(\ell)} - \boldsymbol{\varepsilon}_*) (\boldsymbol{\varepsilon}^{(\ell)} - \boldsymbol{\varepsilon}_*)^T$$

⁶Details in for example: J. Kaipio, V. Kolehmainen, *Approximate marginalization* over modelling errors and uncertainties in inverse problems, Bayesian Theory and Applications, 2013

What Have we Accomplished?

An updated likelihood \Rightarrow An updated MAP estimate:

$$oldsymbol{eta}_{\mathrm{MAP}}^{\mathrm{BAE}} := rg\min_{oldsymbol{eta} \in \mathbb{R}^n} \left\{ \mathcal{J}(oldsymbol{eta})
ight\}$$

with

$$\begin{aligned} \mathcal{J}(\boldsymbol{\beta}) &= \frac{1}{2} \left(\left\| \boldsymbol{g}_{a_*}(\boldsymbol{\beta}) - \boldsymbol{d} + \boldsymbol{\nu}_* \right\|_{\boldsymbol{\Gamma}_{\nu}^{-1}}^2 + \left\| \mathbf{A} \left(\boldsymbol{\beta} - \boldsymbol{\beta}_* \right) \right\|^2 \right) \\ &= \frac{1}{2} \left(\left\| \mathcal{B} \boldsymbol{u} - \boldsymbol{d} + \boldsymbol{\nu}_* \right\|_{\boldsymbol{\Gamma}_{\nu}^{-1}}^2 + \left\| \mathbf{A} \left(\boldsymbol{\beta} - \boldsymbol{\beta}_* \right) \right\|^2 \right) \end{aligned}$$

 ${\mathcal B}$ is the observation operator, and ${\boldsymbol u}$ is the FEM solution to the forward problem

$$\begin{split} -\nabla \cdot (e^{a_*} \nabla u(\boldsymbol{x})) &= 0 & \text{in } \Omega, \\ e^{a_*} \nabla u(\boldsymbol{x}) \cdot \boldsymbol{n}_{\mathrm{t}} &= g(\boldsymbol{x}) & \text{on } \Gamma_{\mathrm{t}} \\ ^{a_*} \nabla u(\boldsymbol{x}) \cdot \boldsymbol{n}_{\mathrm{b}} + e^{\beta(\boldsymbol{x})} u(\boldsymbol{x}) &= 0 & \text{on } \Gamma_{\mathrm{b}} \\ u(\boldsymbol{x}) &= 0 & \text{on } \Gamma_{\mathrm{s}}. \end{split}$$

e'

Use an inexact CG adjoint-based Gauss-Newton method

• Set up Lagrangian functional $\mathcal{L}:\mathcal{V}\times\mathcal{V}\times\mathcal{E}\to\mathbb{R}$ is

$$\mathcal{L}(u, \boldsymbol{p}, \boldsymbol{\beta}) := \mathcal{J} + \int_{\Omega} e^{a_*}
abla u \cdot
abla \boldsymbol{p} \; d\boldsymbol{x} - \int_{\Gamma_{\mathrm{t}}} g \boldsymbol{p} \; d\boldsymbol{s}_{\mathrm{t}} + \int_{\Gamma_{\mathrm{b}}} e^{\boldsymbol{\beta}} u \boldsymbol{p} \; d\boldsymbol{s}_{\mathrm{b}},$$

- Gradient of $\mathcal J$ found by requiring variations of $\mathcal L$ with respect to the forward potential u and the *adjoint potential* p vanish
- Results in following strong form of gradient \mathcal{G} ,

$$\mathcal{G}(\beta) := \mathcal{A}^2 \left(\beta - \beta_*\right) + e^\beta u p$$

where u satisfies the forward problem, and p satisfies the adjoint Poisson problem for given u and β :

The adjoint Poisson problem:

$$-\nabla\cdot(e^{a_*}\nabla p(\boldsymbol{x}))=-\mathcal{B}^*\boldsymbol{\Gamma}_{\boldsymbol{\nu}}^{-1}(\mathcal{B}\boldsymbol{u}(\boldsymbol{x})-\boldsymbol{d}+\boldsymbol{\nu}_*)\qquad\text{ in }\Omega,$$

$$e^{a_*} \nabla p(\boldsymbol{x}) \cdot \boldsymbol{n}_{\mathrm{t}} = 0$$
 on Γ_{t} ,

$$e^{a_*} \nabla p(\boldsymbol{x}) \cdot \boldsymbol{n}_{\mathrm{b}} + e^{\beta(\boldsymbol{x})} p(\boldsymbol{x}) = 0$$
 on Γ_{b} ,

$$p(oldsymbol{x})=0$$
 on $\Gamma_{
m s},$

 Action of the Gauss-Newton approximation of the Hessian operator evaluated at β in the direction β is given by

$$\mathcal{H}(\beta)(\hat{\beta}) := \mathcal{A}^2 \hat{\beta} + e^\beta \hat{\beta} u \hat{p}$$

where \hat{p} satisfies the incremental adjoint Poisson problem and \hat{u} satisfies the incremental forward Poisson problem

Methods for Inversion

The incremental adjoint Poisson problem

$$-\nabla \cdot (e^{a_*} \nabla \hat{p}(\boldsymbol{x})) = -\mathcal{B}^* \boldsymbol{\Gamma}_{\boldsymbol{\nu}}^{-1} \mathcal{B} \hat{u}(\boldsymbol{x}) \qquad \text{in } \Omega$$

$$e^{a_*}
abla \hat{p}(oldsymbol{x}) \cdot oldsymbol{n}_{ ext{t}} = 0$$
 on $\Gamma_{ ext{t}}$

$$e^{a_*}\nabla\hat{p}(\boldsymbol{x})\cdot\boldsymbol{n}_{\rm b}+e^{\beta(\boldsymbol{x})}\hat{p}(\boldsymbol{x})=0\qquad\qquad \text{on }\Gamma_{\rm b},$$

$$\hat{p}(oldsymbol{x})=0$$
 on $\Gamma_{
m s},$

February, 2019

13 / 30

The incremental forward Poisson problem

$$-\nabla \cdot (e^{a_*} \nabla \hat{u}(\boldsymbol{x})) = 0 \qquad \qquad \text{in } \Omega$$

$$e^{a_*} \nabla \hat{u}(\boldsymbol{x}) \cdot \boldsymbol{n}_{\mathrm{t}} = 0$$
 on Γ_{t}

$$\begin{split} e^{a_*} \nabla \hat{u}(\boldsymbol{x}) \cdot \boldsymbol{n}_{\rm b} + e^{\beta(\boldsymbol{x})} \hat{u}(\boldsymbol{x}) &= -\hat{\beta} e^{\beta(\boldsymbol{x})} u(\boldsymbol{x}) \qquad \text{on } \Gamma_{\rm b}, \\ \hat{u}(\boldsymbol{x}) &= 0 \qquad \qquad \text{on } \Gamma_{\rm s}. \end{split}$$

Methods for Inversion

The resulting system to be solved (inexactly using CG) for the Gauss-Newton search direction, $\hat{\beta}$, is

 $\mathcal{H}(\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}) = -\mathcal{G}(\boldsymbol{\beta}).$

For joint inversion⁷ we would also need to solve

 $\mathcal{H}_a(a)(\hat{a}) = -\mathcal{G}_a(a)$

for \hat{a} , with

$$\mathcal{G}_a(a) := \mathcal{A}_a^2 (a - a_*) + e^a \nabla u \cdot \nabla p$$
$$\mathcal{H}_a(a)(\hat{a}) := \mathcal{A}_a^2 \hat{a} + e^a \hat{a} \nabla u \cdot \nabla \hat{p}$$

⁷Such an approach was used in an ice sheet problem, details in N. Petra et al., An inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model, Journal of Glaciology, 2012 • ()

Ru Nicholson (U o Auckland)

BAE approach to the Robin problem

February, 2019 14 / 30

Computational Examples Set Up

- Domain $\Omega = [0,1] \times [0,1] \times [0,0.01]$
- 33 point measurements on the top of the domain
- Avoid *inverse crimes* by using finer FEM discretisation to generate data than for inversions

	Mesh use	#Nodes	#Els	#Param
Example 1				
	Data synthesis	28,611	150,000	2,601
	Inversion	6,727	32,400	961
Example 2				
	Data synthesis Inversion	132,651 29,791	750,000 162,000	2,601 961

• 1% noise added to measurements: $\Gamma_e = \delta_e^2 I$.

Prior for

• Covariance set by using $\alpha = 7$, $\gamma = 0.01$ and $\kappa = 0$ • Recall, $\Gamma_{\beta} = (A^T A)^{-1}$, with $A = KG^{-1}$ where

$$K_{ij} = \alpha \int_{\Gamma_{\rm b}} \left(\gamma \nabla \phi_i \cdot \nabla \phi_j + \phi_i \phi_j \right) \, d\mathbf{x} + \int_{\partial \Gamma_{\rm b}} \kappa \phi_i \phi_j \, d\mathbf{s},$$

and G^{-1} effectively homogenises the variance of the prior.

Figure: spatial variance of β for different boundary conditions

Prior for

- Prior mean set as $\beta_* = 1$
- \bullet Same prior for ${\pmb \beta}$ and true value, ${\pmb \beta}_{\rm true}$ used for both numerical examples

Figure: Three draws from $\pi_{\rm pr}(\boldsymbol{\beta})$ and $\boldsymbol{\beta}_{\rm true}$

17 / 30

Example One: The Isotropic Case

• Mean and Covariance set using $a_* = 0$, $\alpha_a = 100$, $\gamma_a = 0.001$ • With $\Gamma_a = (A_a^T A_a)^{-1}$, with $A_a = K$ where

$$K_{ij} = \alpha_a \int_{\Omega} \left(\gamma_a \nabla \phi_i \cdot \nabla \phi_j + \phi_i \phi_j \right) \, d\mathbf{x}$$

Figure: Three draws from $\pi_{\rm pr}(a)$ and $a_{\rm true}$

18 / 30

Approximation Errors for Example One

- r = 1000 samples drawn to calculate ε_* and Γ_{ε} .
- Some components of Γ_{ε} are pprox 100 imes larger than those in Γ_{e}
- Perhaps more important: Structured noise

Figure: Statistics of the measurement errors and the approximation errors

Results for Example One

Results are compared for for the following

- Reference case: use the correct value of a in the model
- Conventional error case: neglect approximation errors
- BAE case: take into account approximation errors

Figure: β_{true} , reference MAP, conventional error MAP, BAE MAP

20 / 30

Results for Example One

Figure: Prior and posterior variance: reference, conventional error, BAE

Ru Nicholson (U o Auckland)

BAE approach to the Robin problem

February, 2019 21 / 30

Example Two: The Anisotropic Case

• Mean and Covariance set using $a_* = 0$, $\alpha_a = 100$, $\gamma_a = \text{diag}(10^{-2}, 10^{-2}, 10^{-8})$ • With $\Gamma_a = (\mathbf{A}_a^T \mathbf{A}_a)^{-1}$, with $\mathbf{A}_a = \mathbf{K}$ where $K_{ij} = \alpha_a \int_{\Omega} (\gamma_a \nabla \phi_i \cdot \nabla \phi_j + \phi_i \phi_j) d\mathbf{x}$

Figure: Three draws from $\pi_{pr}(a)$ and a_{true}

Ru Nicholson (U o Auckland)

February, 2019

22 / 30

Approximation Errors for Example Two

- Again, r = 1000 samples drawn to calculate ε_* and Γ_{ε} .
- Some components of $\Gamma_{arepsilon}$ are > 100 imes larger than those in Γ_{e}
- We have: Structured noise

Figure: Statistics of the measurement errors and the approximation errors

Results for Example Two

Results are compared for for the following

- Reference case: use the correct value of a in the model
- Conventional error case: neglect approximation errors
- BAE case: take into account approximation errors

Figure: β_{true} , reference MAP, conventional error MAP, BAE MAP

Results for Example Two

Figure: Prior and posterior variance: reference, conventional error, BAE

February, 2019 25 / 30

Computational Costs

- $\bullet\,$ Gauss-Newton terminated when norm of gradient decreased by factor of $10^7\,$
- CG iterations are terminated using Eisenstat-Walker condition

	MAP	#GN	#CG	avg.CG	#back	#Poisson
Example 1						
	REF	8	117	15	0	250
	CEM	11	101	10	4	228
	BAE	5	57	12	0	124
Example 2						
	REF	6	54	9	0	120
	CEM	8	95	12	0	206
	BAE	5	97	20	0	204
				۰ 🗆	 < ☐ > < E 	< स≣। ≣ • २ <

Current & Future Work: The Ice Sheet Problem

Consider the incompressible Stokes equations⁸

$$\begin{aligned}
-\nabla \cdot \boldsymbol{\sigma}_{\boldsymbol{u}} &= \rho \boldsymbol{g} \qquad \boldsymbol{x} \in \Omega, \\
\nabla \cdot \boldsymbol{u} &= 0 \qquad \boldsymbol{x} \in \Omega,
\end{aligned} \tag{3}$$

- Basal sliding coefficient β
- Glen's flow-law exponent parameter *n*: Determines (non-)linearity

$$\begin{split} \boldsymbol{\sigma}_{\boldsymbol{u}} &= -p\mathbf{I} + 2\eta(\boldsymbol{u},\boldsymbol{n})\dot{\boldsymbol{\varepsilon}} & \text{Cauchy stress tensor} \\ \eta(\boldsymbol{u},\boldsymbol{n}) &= \frac{1}{2}A^{-\frac{1}{n}}\left(\dot{\boldsymbol{\varepsilon}}_{\parallel}(\boldsymbol{u}) + \epsilon\right)^{\frac{1-n}{2n}} & \text{Effective viscosity} \\ \dot{\boldsymbol{\varepsilon}}(\boldsymbol{u}) &= \frac{1}{2}\left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{T}\right) & \text{Strain rate tensor} \\ \dot{\boldsymbol{\varepsilon}}_{\parallel}(\boldsymbol{u}) &= \frac{1}{2}\dot{\boldsymbol{\varepsilon}}(\boldsymbol{u}) : \dot{\boldsymbol{\varepsilon}}(\boldsymbol{u}) & \text{Second invariant} \end{split}$$

⁸See for example N. Petra et al., *An inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model*, Journal of Glaciology, 2012

Ru Nicholson (U o Auckland)

February, 2019 27 / 30

The Ice Sheet Problem

$$egin{aligned} egin{aligned} egi$$

$$\int_{\Omega} 2\eta(\boldsymbol{u}, \boldsymbol{n}) \dot{\boldsymbol{\varepsilon}}(\boldsymbol{u}) : \dot{\boldsymbol{\varepsilon}}(\boldsymbol{v}) - p \nabla \cdot \boldsymbol{v} - q \nabla \cdot \boldsymbol{u} \ d\boldsymbol{x} + \int_{\Gamma_b} e^{\beta} \boldsymbol{T} \boldsymbol{u} \cdot \boldsymbol{T} \boldsymbol{v} \ d\boldsymbol{s} = \int_{\Omega} \rho \boldsymbol{g} \cdot \boldsymbol{v} \ d\boldsymbol{x}$$

The Ice Sheet Problem

• Replace nonlinear Stokes model with linear counterpart ⁹

$$\boldsymbol{f}(\boldsymbol{\beta},\boldsymbol{n}) = \boldsymbol{g}_{\boldsymbol{n}_*}(\boldsymbol{\beta}) + \boldsymbol{\varepsilon}(\boldsymbol{\beta}), \quad \boldsymbol{n}_* = 1$$

Figure: Nonlinear (left) and Linear (right) velocities for same β_{true} ,

⁹See R. Nicholson, O. Babaniyi, N. Petra, *Incorporating model discrepancy stemming* from uncertain rheology in an inverse ice sheet flow problem; in preperation **E O**

Ru Nicholson (U o Auckland)

BAE approach to the Robin problem

Summary

Conclusions:

- The Bayesian approximation error (BAE) approach allows use of simpler forward model while *premarginalising* over auxilliary parameters
- Consequential model discrepancy dealt with systematically.
- BAE approach results in an updated likelihood which fits in naturally to the existing framework.
- Neglecting model discrepancy can lead to infeasible results.
- Robin problem details in R. Nicholson, N. Petra, J. Kaipio, *Estimation of the Robin coefficient field in a Poisson problem with uncertain conductivity field*, Inverse Problems 34 (11) 2018
- Ice sheet problem details in R. Nicholson, O. Babaniyi, N. Petra, Incorporating model discrepancy stemming from uncertain rheology in an inverse ice sheet flow problem, in preperation
- Thank you

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >