Nonconvex ADMM: Convergence and Applications

Yu Wang (Xi'an Jiaotong), Wotao Yin (UCLA), Jinshan Zeng (Jiangxi Normal)

SIAM Imaging'16 — May 26, 2016

1. Alternating Direction Method of Multipliers (ADMM): Background and Existing Work

Basic Formulation

 $\begin{array}{l} \underset{x,y}{\text{minimize }} f(x) + h(y) \\ \text{subject to } Ax + By = b \end{array}$

- functions f,h can take the extended value $\infty \text{, can be nonsmooth}$

ADMM

• Define the augmented Lagrangian

$$\mathcal{L}_{\beta}(x,y;w) = f(x) + h(y) + \langle w, Ax + By - b \rangle + \frac{\beta}{2} \|Ax + By - b\|_{2}^{2}$$

• Algorithm:

•
$$x^{k+1} \in \underset{x}{\operatorname{arg\,min}} \mathcal{L}_{\beta}(x, y^{k}; w^{k})$$

• $y^{k+1} \in \underset{y}{\operatorname{arg\,min}} \mathcal{L}_{\beta}(x^{k+1}, y; w^{k})$
• $w^{k+1} = w^{k} + \beta(Ax^{k+1} + By^{k+1} - b)$

- Feature: splits numerically awkward combinations of f and h
- Often, one or both subproblems are easy to solve

Brief history (convex by default)

- 1950s, Douglas-Rachford Splitting (DRS) for PDEs
- ADM (ADMM) Glowinski and Marroco'75, Gabay and Mercier'76
- Convergence proof: Glowinski'83
- ADMM=dual-DRS (Gabay'83), ADMM=DRS and ADMM=dual-ADMM (Eckstein'89, E.-Fukushima'94, Yan-Yin'14), ADMM=PPA (E.'92)
- if a subproblem is quadratic, equivalent under order swapping (Yan-Yin'14)
- Convergence rates (Monterio-Svaiter'12, He-Yuan'12, Deng-Yin'12, Hong-Luo'13, Davis-Yin'14, ...)
- Accelerations (Goldstein et al'11, Ouyang et al'13)
- Nonconvex (Hong-Luo-Raz...'14, Wang-Cao-Xu'14, Li-Pong'14, this work)

2. Nonconvex ADMM Applications

Background extraction from video

- From observation b of a video Z, decompose it into low-rank background L and sparse foreground S by

minimize
$$\Psi(L) + \Phi(S) + \frac{1}{2} ||A(Z) - b||_F^2$$

subject to $L + S = Z$.

- Originally proposed by J.Wright et al. as Robust PCA
- Yuan-Yang'09 and Shen-Wen-Zhang'12 apply convex ADMM
- R.Chartrand'12 and Yang-Pong-Chen'14 use nonconvex regularization

Results of $\ell_p\text{-minimization}$ for S from Yang-Pong-Chen'14

Matrix completion with nonnegative factors

- From partial observations, recover a matrix $Z\approx XY$ where $X,Y\geq 0$
- Xu-Yin-Wen-Zhang'12 applies ADMM to the model

$$\begin{split} \underset{X,Y,Z,U,V}{\text{minimize}} & \frac{1}{2} \|XY - Z\|_F^2 + \iota_{\geq 0}(U) + \iota_{\geq 0}(V) \\ \text{subject to } X - U &= 0 \\ & Y - V &= 0 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

• The objective is nonconvex due to XY

Results from Xu-Yin-Wen-Zhang'12 Original images

Results from Xu-Yin-Wen-Zhang'12 **Recovered images** (SR: sample ratio)

ADM SR = 0.1

ADM SR = 0.1

ADM SR = 0.2

Ptychographic phase retrieval

• Ptychography: a diffractive imaging technique that reconstructs an object from a set of diffraction patterns produced by a moving probe. The probe illuminates a portion of the object at a time.

Thibault-Menzel'13

• Phaseless measurements: $b_i = |\mathcal{F}Q_i x|$, where x is the object and Q_i is an illumination matrix.

- let |z| denote the amplitude vector of a complex vector z
- Wen-Yang-Liu-Marchesini'12 develops nonconvex ADMM for the model

minimize
$$\frac{1}{2} \| |z_1| - b_1 \|^2 + \dots + \frac{1}{2} \| |z_p| - b_p \|^2$$

subject to $z_i - \mathcal{F}Q_i x = 0$, $i = 1, \dots, p$.

Optimization on spherical and Stiefel manifolds

Lai-Osher'12 develops nonconvex ADMM for

 $\begin{array}{l} \underset{X,P}{\text{minimize}} \quad f(X) + \iota_{\mathcal{P}}(P) \\ \text{subject to } X - P = 0. \end{array}$

- Examples of ${\mathcal P}$
 - Spherical manifold $\mathcal{P} = \{P : ||P(:,i)||_2 = 1\}$
 - Stiefel manifold $\mathcal{P} = \{P : P^T P = I\}$

Chromatic-noise removal results from Lai-Osher'12

- "Curvilinear" is a feasible algorithm for manifold optimization from Wen-Yin'10 $% \left({{\rm S}_{\rm a}} \right)$

Mean- ρ -Basel portfolio optimization

- Goal: allocate assets for expected return, Basel regulation, and low risk
- Wen-Peng-Liu-Bai-Sun'13 applies nonconvex ADMM to solve this problem

- $\mathcal{U} = \{ u \geq 0 : \mu^T u \geq r, \mathbf{1}^T u = 1 \}$
- $\rho_{\mathrm{Basel} < C}(-Ru)$ is Basel Accord requirement, calculated on certain regulated dataset R
- $\rho(-Yu)$ is the risk measure, such as variance, VaR, CVaR
- Their results are reportedly better than MIPs solved by CPLEX

Other applications

- tensor factorization (Liavas-Sidiropoulos'14)
- compressive sensing (Chartrand-Wohlberg'13)
- optimal power flow (You-Peng'71)
- direction fields correction, global conformal mapping (Lai-Osher'14)
- image registration (Bouaziz-Tagliasacchi-Pauly'13)
- network inference (Miksik et al'14)

3. A simple example

A simple example

augmented Lagrangian

$$L_{\beta}(x, y, w) := \frac{1}{2}(x^2 - y^2) + \iota_{[-1,1]}(x) + w(x - y) + \frac{\beta}{2}|x - y|^2$$

- ALM diverges for any fixed β (but will converge if $\beta \to \infty$)
- ADMM converges for any fixed $\beta > 1$

Numerical ALM

- set $\beta = 2$, initialize x, y, w as iid randn
- ALM iteration:

$$(x^{k+1}, y^{k+1}) = \underset{x,y}{\arg\min} L_{\beta}(x, y, w^{k});$$
$$w^{k+1} = w^{k} + \beta(x^{k+1} - y^{k+1});$$

why ALM diverges: $(x,y) = \arg \min_{x,y} L_{\beta}(x,y,w)$ is too sensitive in w

Contours of $L_{\beta}(x, y, w)$ for $\beta = 2$ and varying w

ADMM

• ADMM following the order $x \to y \to w$:

$$\begin{cases} x^{k+1} = \arg \min_{x} L_{\beta}(x, y^{k}, w^{k}) \\ y^{k+1} = \arg \min_{y} L_{\beta}(x^{k+1}, y, w^{k}) \\ w^{k+1} = w^{k} + \alpha\beta(x^{k+1} - y^{k+1}) \end{cases}$$

or the order $y \to x \to w$:

$$\begin{cases} y^{k+1} = \arg\min_{y} L_{\beta}(x^{k}, y, w^{k}) \\ x^{k+1} = \arg\min_{x} L_{\beta}(x, y^{k+1}, w^{k}) \\ w^{k+1} = w^{k} + \alpha\beta(x^{k+1} - y^{k+1}) \end{cases}$$

when β > 1, both x- and y-subproblems are (strongly) convex, so their solutions are stable

ADMM following the order $x \rightarrow y \rightarrow w$

$$\begin{cases} x^{k+1} = \mathbf{proj}_{[-1,1]} \left(\frac{1}{\beta+1} (\beta y^k - w^k) \right) \\ y^{k+1} = \frac{1}{\beta-1} (\beta x^{k+1} + w^k) \\ w^{k+1} = w^k + \alpha \beta (x^{k+1} - y^{k+1}) \end{cases}$$

- supposing $\alpha=1$ and eliminating $y^k\equiv -w^k,$ we get

$$\begin{cases} x^{k+1} = \mathbf{proj}_{[-1,1]}(-w^k) \\ w^{k+1} = \frac{-1}{\beta - 1} \left(\beta x^{k+1} + w^k \right) \end{cases} \Rightarrow \quad w^{k+1} = \frac{-1}{\beta - 1} \left(\beta \mathbf{proj}_{[-1,1]}(-w^k) + w^k \right)$$

- pick $\beta > 2$ and change variable $\beta \bar{w}^k \leftarrow w^k$

- if $w^k \in [-1,1],$ then $\mathbf{proj}_{[-1,1]}(-w^k) = -w^k$ and $w^{k+1} = w^k$
- o.w., $\bar{w}^{k+1} = \frac{1}{\beta 1} (\operatorname{sign}(\bar{w}^k) \bar{w}^k)$ so $|\bar{w}^{k+1}| = \frac{1}{\beta 1} \left| |\bar{w}^k| 1 \right|$

 $\{x^k,y^k,w^k\}$ converges geometrically with finite termination

ADMM following the order $y \rightarrow x \rightarrow w$

$$\begin{cases} y^{k+1} = \frac{1}{\beta - 1} (\beta x^k + w^k) \\ x^{k+1} = \mathbf{proj}_{[-1,1]} \left(\frac{1}{\beta + 1} (\beta y^{k+1} - w^k) \right) \\ w^{k+1} = w^k + \alpha \beta (x^{k+1} - y^{k+1}) \end{cases}$$

- set $\alpha=1$ and introduce $z^k=\frac{1}{\beta^2-1}(\beta^2 x^k+w^k);$ we get

$$z^{k+1} = rac{1}{eta - 1} ig(eta \mathbf{proj}_{[-1,1]}(z^k) - z^kig),$$

which is similar to w^{k+1} in ADMM $x \to y \to w$.

- $x^{k+1} = \mathbf{proj}_{[-1,1]}(z^k)$ and $w^{k+1} = \beta x^{k+1} (\beta+1) z^k$
- $\{x^k,y^k,w^k\}$ converges geometrically with finite termination

Numerical test: finite convergence

Both iterations converge to a global solution in 3 steps

Why ADMM converges? Reduces to convex coordinate descent

- For this problem, we can show $y^k \equiv -w^k$ for ADMM $x \to y \to w$
- Setting w = −y yields a convex function:

$$L_{\beta}(x, y, w)\Big|_{w=-y} = \frac{1}{2}(x^{2} - y^{2}) + \iota_{[-1,1]}(x) - y(x - y) + \frac{\beta}{2}|x - y|^{2}$$
$$= \frac{\beta + 1}{2}|x - y|^{2} + \iota_{[-1,1]}(x)$$
$$=: f(x, y)$$

• ADMM $x \to y \to w$ = coordinate descent to the convex f(x, y):

$$\begin{cases} x^{k+1} = \arg\min_x f(x, y^k) \\ y^{k+1} = y^k - \rho \frac{\mathrm{d}}{\mathrm{d}y} f(x^{k+1}, y^k) \end{cases}$$

where $\rho = \frac{\beta}{\beta^2 - 1}$

4. New convergence results

The generic model

$$\begin{array}{ll} \underset{x_1,\ldots,x_p,y}{\text{minimize}} & \phi(x_1,\ldots,x_p,y) \\ \text{subject to} & A_1x_1 + \cdots + A_px_p + By = b, \end{array} \tag{1}$$

• we single out y because of its unique role: "locking" the dual variable w^k

Notation:

- $\mathbf{x} := [x_1; \ldots; x_p] \in \mathbb{R}^n$
- $\mathbf{x}_{< i} := [x_1; \ldots; x_{i-1}]$
- $\mathbf{x}_{>i} := [x_{i+1}; \ldots; x_p]$
- $\mathbf{A} := [A_1 \cdots A_p] \in \mathbb{R}^{m \times n}$
- $\mathbf{A}\mathbf{x} := \sum_{i=1}^{p} A_i x_i \in \mathbb{R}^m.$
- Augmented Lagrangian:

$$L_{\beta}(x_1, \dots, x_p, y, w) = \phi(x_1, \dots, x_p, y) + \langle w, \mathbf{A}\mathbf{x} + By - b \rangle$$
$$+ \frac{\beta}{2} \|\mathbf{A}\mathbf{x} + By - b\|^2$$

The Gauss-Seidel ADMM algorithm

0. initialize $\mathbf{x}^{0}, y^{0}, w^{0}$ 1. for k = 0, 1, ... do 2. for i = 1, ..., p do 3. $x_{i}^{k+1} \leftarrow \arg \min_{x_{i}} L_{\beta}(x_{< i}^{k+1}, x_{i}, x_{> i}^{k}, y^{k}, w^{k});$ 4. $y^{k+1} \leftarrow \arg \min_{y} L_{\beta}(\mathbf{x}^{k+1}, y, w^{k});$ 5. $w^{k+1} \leftarrow w^{k} + \beta \left(\mathbf{A}\mathbf{x}^{k+1} + By^{k+1} - b\right);$ 6. if stopping conditions are satisfied, return $x_{1}^{k}, ..., x_{p}^{k}$ and y^{k} .

The overview of analysis

- Loss of convexity \Rightarrow no Fejer-monotonicity, or VI based analysis.
- Choice of Lyapunov function is critical. Following Hong-Luo-Razaviyayn'14, we use the augmented Lagrangian.
- The last block *y* plays an important role.

ADMM is better than ALM for a class of nonconvex problems

- ALM: nonsmoothness generally requires $\beta \to \infty$;
- ADMM: works with a finite β if the problem has the *y*-block (h, B) where h is smooth and $\text{Im}(A) \subseteq \text{Im}(B)$, even if the problem is nonsmooth
- in addition, ADMM has simpler subproblems

Analysis keystones

P1 (boundedness) { \mathbf{x}^k, y^k, w^k } is bounded, $L_\beta(\mathbf{x}^k, y^k, w^k)$ is lower bounded; P2 (sufficient descent) for all sufficiently large k, we have

$$L_{\beta}(\mathbf{x}^{k}, y^{k}, w^{k}) - L_{\beta}(\mathbf{x}^{k+1}, y^{k+1}, w^{k+1})$$

$$\geq C_{1} \left(\|B(y^{k+1} - y^{k})\|^{2} + \sum_{i=1}^{p} \|A_{i}(x_{i}^{k} - x_{i}^{k+1})\|^{2} \right)$$

P3 (subgradient bound) exists $d^{k+1}\in \partial L_\beta(\mathbf{x}^{k+1},y^{k+1},w^{k+1})$ such that

$$||d^{k+1}|| \le C_2 \big(||B(y^{k+1} - y^k)|| + \sum_{i=1}^p ||A_i(x_i^{k+1} - x_i^k)|| \big).$$

Similar to coordinate descent but treats \boldsymbol{w}^k in a special manner

Proposition

Suppose that the sequence (\mathbf{x}^k, y^k, w^k) satisfies P1–P3.

(i) It has at least a limit point (\mathbf{x}^*, y^*, w^*) , and any limit point (\mathbf{x}^*, y^*, w^*) is a stationary solution. That is, $0 \in \partial L_{\beta}(\mathbf{x}^*, y^*, w^*)$.

(ii) The running best rates ^a of $\{\|B(y^{k+1} - y^k)\|^2 + \sum_{i=1}^p \|A_i(x_i^k - x_i^{k+1})\|^2\}$ and $\{\|d^{k+1}\|^2\}$ are $o(\frac{1}{k})$.

(iii) If L_{β} is a KŁ function, then converges globally to the point (\mathbf{x}^*, y^*, w^*) .

The proof is rather standard.

^aA nonnegative sequence a_k induces its running best sequence $b_k = \min\{a_i : i \le k\}$; therefore, a_k has running best rate of o(1/k) if $b_k = o(1/k)$.

$y^k \ {\rm controls} \ w^k$

- Notation: \cdot^+ denotes \cdot^{k+1}
- Assumption: β is sufficiently large but fixed
- By combining y-update and w-update (plugging $w^k = w^{k-1} + \beta(\mathbf{Ax}^k + By^k b)$ into the y-optimality cond.)

$$0 = \nabla h(y^k) + B^T w^k, \quad k = 1, 2, \dots$$

- Assumption $\{b\} \cup \operatorname{Im}(A) \subseteq \operatorname{Im}(B) \Rightarrow w^k \in \operatorname{Im}(B)$
- Then, with additional assumptions, we have

$$||w^+ - w^k|| \le O(||By^+ - By^k||)$$

and

$$L_{\beta}(x^{+}, y^{k}, w^{k}) - L_{\beta}(x^{+}, y^{+}, w^{+}) \ge O(\|By^{+} - By^{k}\|^{2})$$

(see the next slide for detailed steps)

Detailed steps

• Bound Δw by ΔBy :

$$\begin{split} \|w^+ - w^k\| &\leq C \|B^T(w^+ - w^k)\| = O(\|\nabla h(y^+) - \nabla h(y^k)\|) \leq O(\|By^+ - By^k\|) \\ \text{where } C := \lambda_{++}^{-1/2}(B^TB) \text{, the 1st } ``\leq'' \text{ follows from } w^+, w^k \in \mathrm{Im}(B) \text{, and} \\ \text{the 2nd } ``\leq'' \text{ follows from the assumption of Lipschitz sub-minimization} \\ \text{path (see later)} \end{split}$$

- Then, smooth h leads to sufficient decent during the y- and w-updates:

$$\begin{split} & L_{\beta}(x^{+}, y^{k}, w^{k}) - L_{\beta}(x^{+}, y^{+}, w^{+}) \\ = & \left(h(y^{k}) - h(y^{+}) + \langle w^{+}, By^{k} - By^{+} \rangle\right) + \frac{\beta}{2} \|By^{+} - By^{k}\|^{2} - \frac{1}{\beta} \|w^{+} - w^{k}\|^{2} \\ \geq & -O(\|By^{+} - By^{k}\|^{2}) + \frac{\beta}{2} \|By^{+} - By^{k}\|^{2} - O(\|By^{+} - By^{k}\|) \\ & \text{(with suff. large } \beta) \\ = & O(\|By^{+} - By^{k}\|^{2}) \end{split}$$

where the " \geq " follows from the assumption of Lipschitz sub-minimization path (see later)

x^k -subproblems: fewer conditions on f, A

We only need conditions to ensure monotonicity and sufficient decent like

- $L_{\beta}(x_{<i}^+, x_i^k, x_{>i}^k, y^k, w^k) \ge L_{\beta}(x_{<i}^+, x_i^+, x_{>i}^k, y^k, w^k))$
- and sufficient descent:

 $L_{\beta}(x_{<i}^{+}, x_{i}^{k}, x_{>i}^{k}, y^{k}, w^{k}) - L_{\beta}(x_{<i}^{+}, x_{i}^{+}, x_{>i}^{k}, y^{k}, w^{k})) \ge O(\|A_{i}x_{i}^{k} - A_{i}x_{i}^{+}\|^{2})$

For Gauss-Seidel updates, the proof is inductive $i=p,p-1,\ldots,1$

A sufficient condition for what we need:

 $f(x_1,\ldots,x_p)$ has the form: smooth + separable-nonsmooth

Remedy of nonconvexity: Prox-regularity

- A convex function f has subdifferentials in int(dom f) and satisfies

$$f(y) \geq f(x) + \langle d, y - x \rangle, \quad x, y \in \text{dom} f, d \in \partial f(x)$$

• A function f is prox-regular if $\exists \ \gamma \text{ such that}$

$$f(y) + \frac{\gamma}{2} \|x - y\|^2 \ge f(x) + \langle d, y - x \rangle, \quad x, y \in \operatorname{dom} f, d \in \partial f(x)$$

where ∂f is the *limiting subdifferential*.

Limitation: not satisfied by functions with sharps, e.g., l_{1/2}, which are often used in sparse optimization.

Restricted prox-regularity

- **Motivation**: your points do not land on the steep region around the sharp, which we call the *exclusion set*
- Exclusion set: for M > 0, define

 $S_M := \{ x \in \operatorname{dom}(\partial f) : ||d|| > M \text{ for all } d \in \partial f(x) \}$

idea: points in S_M are never visited (for a suff. large M)

• A function is restricted prox-regular if $\exists M, \gamma > 0$ such that $S_M \subseteq \operatorname{dom}(\partial f)$ and any bounded $T \in \operatorname{dom}(f)$

 $f(y) + \frac{\gamma}{2} \|x - y\|^2 \ge f(x) + \langle d, y - x \rangle, \quad x, y \in T \setminus S_M, \ d \in \partial f(x), \ \|d\| \le M.$

- Example: ℓ_q quasinorm, Schattern-q quasinorm, indicator function of compact smooth manifold

Main theorem 1

Assumptions: $\phi(x_1, \ldots, x_n, y) = f(\mathbf{x}) + h(y)$

A1. the problem is feasible, the objective is feasible-coercive¹

A2. $\operatorname{Im}(A) \subseteq \operatorname{Im}(B)$

A3. $f(\mathbf{x}) = g(\mathbf{x}) + f_1(x_1) + \dots + f_n(x_n)$, where

- g is Lipschitz differentiable
- f_i is either restricted prox-regular, or continuous and piecewise linear²
- A4. h(y) is Lipschitz differentiable

A5. x and y subproblems have Lipschitz sub-minimization paths

Results: subsequential convergence to a stationary point from any start point; if L_{β} is KŁ, then whole-sequence convergence.

¹For feasible points (x_1, \ldots, x_p, y) , if $||(x_1, \ldots, x_n, y)|| \to \infty$, then $\phi(x_1, \ldots, x_n, y) \to \infty$.

²e.g., anisotropic total variation, sorted ℓ_1 function (nonconvex), $(-\ell_1)$ function, continuous piece-wise linear approximation of a function

Necessity of assumptions A2 A4

- Assumptions A2 A4 apply to the last block (h, B)
- A2 cannot be completely dropped.
 Counter example: the 3-block divergence example by Chen-He-Ye-Yuan'13
- A4 cannot be completely dropped. Counter example:

 $\begin{array}{l} \underset{x,y}{\text{minimize}} & -|x|+|y|\\ \text{subject to } x-y=0, \ x\in [-1,1]. \end{array}$

ADMM generates the alternating sequence $\pm(\frac{2}{\beta},0,1)$

Lipschitz sub-minimization path

ADMM subproblem has the form

$$y^k \in \underset{y}{\operatorname{arg\,min}} h(y) + \frac{\beta}{2} \|By + \text{constants}\|^2$$

• Let $u = By^k$. Then y^k is also the solution to

 $\underset{y}{\text{minimize }} h(y) \quad \text{subject to } By = u.$

· We assume a Lipschitz subminimization path

 Sufficient conditions: (i) smooth h + full col-rank B, (ii) smooth and strongly convex h; (iii) not above but your subprob solver warmstarts and finds a nearby solution.

Main theorem 2

Assumptions: $\phi(x_1, \ldots, x_n, y)$ can be fully coupled

- Feasible, the objective is feasible-coercive
- $\operatorname{Im}(A) \subseteq \operatorname{Im}(B)$
- ϕ is Lipschitz differentiable
- x and y subproblems have Lipschitz sub-minimization paths

Results: subsequential convergence to a stationary point from any start point; if L_{β} is KL, then whole-sequence convergence.

5. Comparison with Recent Results

Compare to Hong-Luo-Razaviyayn'14

- Their assumptions are strictly stronger, e.g., only smooth functions
 - $f = \sum_{i} f_{i}$, where f_{i} Lipschitz differentiable or convex
 - h Lipschitz differentiable
 - A_i has full col-rank and B = I
- Applications in consensus and sharing problems.

Compare to Li-Pong'14

- Their assumptions are strictly stronger
 - p = 1 and f is l.s.c.
 - $h\in C^2$ is Lipschitz differentiable and strongly convex
 - A = I and B has full row-rank
 - *h* is coercive and *f* is lower bounded.

Compare to Wang-Cao-Xu'14

- Analyzed Bregman ADMM, which reduces to ADMM with vanishing aux. functions.
- Their assumptions are strictly stronger
 - B is invertible
 - $f(x) = \sum_{i=1}^{p}$, where f_i is strongly convex
 - *h* is Lipschitz differentiable and lower bounded.

6. Applications of Nonconvex ADMM with Convergence Guarantees

Application: statistical learning

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} r(x) + \sum_{i=1}^p l_i (A_i x - b_i)$$

- r is regularization, l_i 's are fitting measures
- ADMM-ready formulation

$$\underset{x,\{z_i\}}{\text{minimize }} r(x) + \sum_{i=1}^p l_i (A_i z_i - b_i)$$

subject to
$$x = z_i, i = 1, \ldots, p$$
.

- ADMM will converge if
 - $r(x) = \|x\|_q^q = \sum_i |x_i|^q$, for $0 < q \le 1$, or piecewise linear
 - $r(x) + \sum_{i=1}^{p} l_i (A_i x b_i)$ is coercive
 - l_1, \ldots, l_p are Lipschitz differentiable

Application: optimization on smooth manifold

 $\underset{x}{\text{minimize } J(x) \quad \text{subject to } x \in S.}$

ADMM-ready formulation

 $\begin{array}{l} \underset{x,y}{\min \text{minimize }} \iota_S(x) + J(y) \\ \text{subject to } x - y = 0. \end{array}$

- ADMM will converge if
 - ${\cal S}$ is a compact smooth manifold, e.g., sphere, Stiefel, and Grassmann manifolds
 - J is Lipschitz differentiable

Application: matrix/tensor decomposition

minimize $r_1(X) + r_2(Y) + ||Z||_F^2$ subject to X + Y + Z = Input.

- Video decomposition: background + foreground + noise
- Hyperspectral decomposition: background + foreground + noise
- ADMM will converge if r_1 and r_2 satisfy our assumptions on f

6. Summary

Summary

- ADMM indeed works for some nonconvex problems!
- The theory indicates that ADMM works better than ALM when the problem has a block (h(y),B) where h is smooth and Im(B) is dominant
- Future directions: weaker conditions, numerical results

Thank you!

Acknowledgements: Wei Shi, Ting Kei Pong, Qing Ling, Xin Liu, Yangyang Xu, and Yiqiu Dong

Supports: NSF

Reference: Yu Wang, Wotao Yin, and Jinshan Zeng. UCLA CAM 15-62.