Nonconvex ADMM: Convergence and Applications

Yu Wang (Xi'an Jiaotong), Wotao Yin (UCLA), Jinshan Zeng (Jiangxi Normal)

SIAM Imaging'16 — May 26, 2016

1. Alternating Direction Method of Multipliers (ADMM): Background and Existing Work

Basic Formulation

$$
\begin{aligned}
& \underset{x, y}{\operatorname{minimize}} f(x)+h(y) \\
& \text { subject to } A x+B y=b
\end{aligned}
$$

- functions f, h can take the extended value ∞, can be nonsmooth

ADMM

- Define the augmented Lagrangian

$$
\mathcal{L}_{\beta}(x, y ; w)=f(x)+h(y)+\langle w, A x+B y-b\rangle+\frac{\beta}{2}\|A x+B y-b\|_{2}^{2}
$$

- Algorithm:
- $x^{k+1} \in \arg \min \mathcal{L}_{\beta}\left(x, y^{k} ; w^{k}\right)$
- $y^{k+1} \in \arg \min \mathcal{L}_{\beta}\left(x^{k+1}, y ; w^{k}\right)$
- $w^{k+1}=w^{k}+\beta\left(A x^{k+1}+B y^{k+1}-b\right)$
- Feature: splits numerically awkward combinations of f and h
- Often, one or both subproblems are easy to solve

Brief history (convex by default)

- 1950s, Douglas-Rachford Splitting (DRS) for PDEs
- ADM (ADMM) Glowinski and Marroco'75, Gabay and Mercier'76
- Convergence proof: Glowinski'83
- ADMM=dual-DRS (Gabay'83), ADMM=DRS and ADMM=dual-ADMM (Eckstein'89, E.-Fukushima'94, Yan-Yin'14), ADMM=PPA (E.'92)
- if a subproblem is quadratic, equivalent under order swapping (Yan-Yin'14)
- Convergence rates (Monterio-Svaiter'12, He-Yuan'12, Deng-Yin'12, Hong-Luo'13, Davis-Yin'14, ...)
- Accelerations (Goldstein et al'11, Ouyang et al'13)
- Nonconvex (Hong-Luo-Raz...'14, Wang-Cao-Xu'14, Li-Pong'14, this work)

2. Nonconvex ADMM Applications

Background extraction from video

- From observation b of a video Z, decompose it into low-rank background L and sparse foreground S by

$$
\begin{aligned}
& \underset{Z, L, S}{\operatorname{minimize}} \Psi(L)+\Phi(S)+\frac{1}{2}\|A(Z)-b\|_{F}^{2} \\
& \text { subject to } L+S=Z
\end{aligned}
$$

- Originally proposed by J.Wright et al. as Robust PCA
- Yuan-Yang'09 and Shen-Wen-Zhang'12 apply convex ADMM
- R.Chartrand'12 and Yang-Pong-Chen'14 use nonconvex regularization

Results of ℓ_{p}-minimization for S from Yang-Pong-Chen'14

Matrix completion with nonnegative factors

- From partial observations, recover a matrix $Z \approx X Y$ where $X, Y \geq 0$
- Xu-Yin-Wen-Zhang'12 applies ADMM to the model

$$
\begin{aligned}
\underset{X, Y, Z, U, V}{\operatorname{minimize}} & \frac{1}{2}\|X Y-Z\|_{F}^{2}+\iota \geq 0 \\
\text { subject to } & X-U=0 \\
& Y-V=0 \\
& \operatorname{Proj}_{\Omega}(Z)=\text { observation. }
\end{aligned}
$$

- The objective is nonconvex due to $X Y$

Results from Xu-Yin-Wen-Zhang'12
 Original images

Results from Xu-Yin-Wen-Zhang'12
Recovered images (SR: sample ratio)

ADM SR $=0.1$

ADM SR $=0.2$

ADM SR $=0.1$

ADM SR $=0.15$

Ptychographic phase retrieval

- Ptychography: a diffractive imaging technique that reconstructs an object from a set of diffraction patterns produced by a moving probe. The probe illuminates a portion of the object at a time.

Thibault-Menzel'13

- Phaseless measurements: $b_{i}=\left|\mathcal{F} Q_{i} x\right|$, where x is the object and Q_{i} is an illumination matrix.
- let $|z|$ denote the amplitude vector of a complex vector z
- Wen-Yang-Liu-Marchesini'12 develops nonconvex ADMM for the model

$$
\begin{array}{ll}
\underset{x, z_{1}, \ldots, z_{p}}{\operatorname{minimie}} & \frac{1}{2}\left\|\left|z_{1}\right|-b_{1}\right\|^{2}+\cdots+\frac{1}{2}\left\|\left|z_{p}\right|-b_{p}\right\|^{2} \\
\text { subject to } z_{i}-\mathcal{F} Q_{i} x=0, \quad i=1, \ldots, p
\end{array}
$$

Optimization on spherical and Stiefel manifolds

- Lai-Osher'12 develops nonconvex ADMM for

$$
\begin{aligned}
& \underset{X, P}{\operatorname{minimize}} f(X)+\iota_{\mathcal{P}}(P) \\
& \text { subject to } X-P=0
\end{aligned}
$$

- Examples of \mathcal{P}
- Spherical manifold $\mathcal{P}=\left\{P:\|P(:, i)\|_{2}=1\right\}$
- Stiefel manifold $\mathcal{P}=\left\{P: P^{T} P=I\right\}$

Chromatic-noise removal results from Lai-Osher'12

- "Curvilinear" is a feasible algorithm for manifold optimization from Wen-Yin'10

Mean- ρ-Basel portfolio optimization

- Goal: allocate assets for expected return, Basel regulation, and low risk
- Wen-Peng-Liu-Bai-Sun'13 applies nonconvex ADMM to solve this problem

$$
\begin{gathered}
\underset{u, x, y}{\operatorname{minimize}} \iota \mathcal{U}(u)+\iota \rho_{\mathrm{Basel}<C}(x)+\rho(y) \\
\text { subject to } x+R u=0 \\
y+Y u=0
\end{gathered}
$$

- $\mathcal{U}=\left\{u \geq 0: \mu^{T} u \geq r, \mathbf{1}^{T} u=1\right\}$
- $\rho_{\text {Basel }<C}(-R u)$ is Basel Accord requirement, calculated on certain regulated dataset R
- $\rho(-Y u)$ is the risk measure, such as variance, $\mathrm{VaR}, \mathrm{CVaR}$
- Their results are reportedly better than MIPs solved by CPLEX

Other applications

- tensor factorization (Liavas-Sidiropoulos'14)
- compressive sensing (Chartrand-Wohlberg'13)
- optimal power flow (You-Peng'71)
- direction fields correction, global conformal mapping (Lai-Osher'14)
- image registration (Bouaziz-Tagliasacchi-Pauly'13)
- network inference (Miksik et al'14)

3. A simple example

A simple example

$$
\operatorname{minimize}_{x, y \in \mathbb{R}} \frac{1}{2}\left(x^{2}-y^{2}\right)
$$

subject to $x-y=0$

$$
x \in[-1,1]
$$

- augmented Lagrangian

$$
L_{\beta}(x, y, w):=\frac{1}{2}\left(x^{2}-y^{2}\right)+\iota_{[-1,1]}(x)+w(x-y)+\frac{\beta}{2}|x-y|^{2}
$$

- ALM diverges for any fixed β (but will converge if $\beta \rightarrow \infty$)
- ADMM converges for any fixed $\beta>1$

Numerical ALM

- set $\beta=2$, initialize x, y, w as iid randn
- ALM iteration:

$$
\begin{aligned}
\left(x^{k+1}, y^{k+1}\right) & =\underset{x, y}{\arg \min } L_{\beta}\left(x, y, w^{k}\right) \\
w^{k+1} & =w^{k}+\beta\left(x^{k+1}-y^{k+1}\right)
\end{aligned}
$$

x^{k}, y^{k} oscillate, w^{k} also does in a small amount
why ALM diverges: $(x, y)=\arg \min _{x, y} L_{\beta}(x, y, w)$ is too sensitive in w

Contours of $L_{\beta}(x, y, w)$ for $\beta=2$ and varying w

ADMM

- ADMM following the order $x \rightarrow y \rightarrow w$:

$$
\left\{\begin{array}{l}
x^{k+1}=\arg \min _{x} L_{\beta}\left(x, y^{k}, w^{k}\right) \\
y^{k+1}=\arg \min _{y} L_{\beta}\left(x^{k+1}, y, w^{k}\right) \\
w^{k+1}=w^{k}+\alpha \beta\left(x^{k+1}-y^{k+1}\right)
\end{array}\right.
$$

or the order $y \rightarrow x \rightarrow w$:

$$
\left\{\begin{array}{l}
y^{k+1}=\arg \min _{y} L_{\beta}\left(x^{k}, y, w^{k}\right) \\
x^{k+1}=\arg \min _{x} L_{\beta}\left(x, y^{k+1}, w^{k}\right) \\
w^{k+1}=w^{k}+\alpha \beta\left(x^{k+1}-y^{k+1}\right)
\end{array}\right.
$$

- when $\beta>1$, both x - and y-subproblems are (strongly) convex, so their solutions are stable

ADMM following the order $x \rightarrow y \rightarrow w$

$$
\left\{\begin{array}{l}
x^{k+1}=\operatorname{proj}_{[-1,1]}\left(\frac{1}{\beta+1}\left(\beta y^{k}-w^{k}\right)\right) \\
y^{k+1}=\frac{1}{\beta-1}\left(\beta x^{k+1}+w^{k}\right) \\
w^{k+1}=w^{k}+\alpha \beta\left(x^{k+1}-y^{k+1}\right)
\end{array}\right.
$$

- supposing $\alpha=1$ and eliminating $y^{k} \equiv-w^{k}$, we get

$$
\left\{\begin{array}{l}
x^{k+1}=\operatorname{proj}_{[-1,1]}\left(-w^{k}\right) \\
w^{k+1}=\frac{-1}{\beta-1}\left(\beta x^{k+1}+w^{k}\right)
\end{array} \quad \Rightarrow \quad w^{k+1}=\frac{-1}{\beta-1}\left(\beta \mathbf{p r o j}_{[-1,1]}\left(-w^{k}\right)+w^{k}\right)\right.
$$

- pick $\beta>2$ and change variable $\beta \bar{w}^{k} \leftarrow w^{k}$
- if $w^{k} \in[-1,1]$, then $\operatorname{proj}_{[-1,1]}\left(-w^{k}\right)=-w^{k}$ and $w^{k+1}=w^{k}$
- o.w., $\bar{w}^{k+1}=\frac{1}{\beta-1}\left(\operatorname{sign}\left(\bar{w}^{k}\right)-\bar{w}^{k}\right)$ so $\left|\bar{w}^{k+1}\right|=\frac{1}{\beta-1}| | \bar{w}^{k}|-1|$
$\left\{x^{k}, y^{k}, w^{k}\right\}$ converges geometrically with finite termination

ADMM following the order $y \rightarrow x \rightarrow w$

$$
\left\{\begin{array}{l}
y^{k+1}=\frac{1}{\beta-1}\left(\beta x^{k}+w^{k}\right) \\
x^{k+1}=\operatorname{proj}_{[-1,1]}\left(\frac{1}{\beta+1}\left(\beta y^{k+1}-w^{k}\right)\right) \\
w^{k+1}=w^{k}+\alpha \beta\left(x^{k+1}-y^{k+1}\right)
\end{array}\right.
$$

- set $\alpha=1$ and introduce $z^{k}=\frac{1}{\beta^{2}-1}\left(\beta^{2} x^{k}+w^{k}\right)$; we get

$$
z^{k+1}=\frac{1}{\beta-1}\left(\beta \operatorname{proj}_{[-1,1]}\left(z^{k}\right)-z^{k}\right),
$$

which is similar to w^{k+1} in ADMM $x \rightarrow y \rightarrow w$.

- $x^{k+1}=\operatorname{proj}_{[-1,1]}\left(z^{k}\right)$ and $w^{k+1}=\beta x^{k+1}-(\beta+1) z^{k}$
- $\left\{x^{k}, y^{k}, w^{k}\right\}$ converges geometrically with finite termination

Numerical test: finite convergence

Both iterations converge to a global solution in 3 steps

Why ADMM converges? Reduces to convex coordinate descent

- For this problem, we can show $y^{k} \equiv-w^{k}$ for ADMM $x \rightarrow y \rightarrow w$
- Setting $w=-y$ yields a convex function:

$$
\begin{aligned}
\left.L_{\beta}(x, y, w)\right|_{w=-y} & =\frac{1}{2}\left(x^{2}-y^{2}\right)+\iota_{[-1,1]}(x)-y(x-y)+\frac{\beta}{2}|x-y|^{2} \\
& =\frac{\beta+1}{2}|x-y|^{2}+\iota_{[-1,1]}(x) \\
& =: f(x, y)
\end{aligned}
$$

- ADMM $x \rightarrow y \rightarrow w=$ coordinate descent to the convex $f(x, y)$:

$$
\left\{\begin{array}{l}
x^{k+1}=\arg \min _{x} f\left(x, y^{k}\right) \\
y^{k+1}=y^{k}-\rho \frac{\mathrm{d}}{\mathrm{~d} y} f\left(x^{k+1}, y^{k}\right)
\end{array}\right.
$$

where $\rho=\frac{\beta}{\beta^{2}-1}$

4. New convergence results

The generic model

$$
\begin{array}{rc}
\underset{x_{1}, \ldots, x_{p}, y}{\operatorname{minimize}} & \phi\left(x_{1}, \ldots, x_{p}, y\right) \\
\text { subject to } & A_{1} x_{1}+\cdots+A_{p} x_{p}+B y=b,
\end{array}
$$

" we single out y because of its unique role: "locking" the dual variable w^{k}

Notation:

- $\mathbf{x}:=\left[x_{1} ; \ldots ; x_{p}\right] \in \mathbb{R}^{n}$
- $\mathbf{x}_{<i}:=\left[x_{1} ; \ldots ; x_{i-1}\right]$
- $\mathbf{x}_{>i}:=\left[x_{i+1} ; \ldots ; x_{p}\right]$
- $\mathbf{A}:=\left[\begin{array}{lll}A_{1} & \cdots & A_{p}\end{array}\right] \in \mathbb{R}^{m \times n}$
- $\mathbf{A x}:=\sum_{i=1}^{p} A_{i} x_{i} \in \mathbb{R}^{m}$.
- Augmented Lagrangian:

$$
\begin{aligned}
L_{\beta}\left(x_{1}, \ldots, x_{p}, y, w\right)= & \phi\left(x_{1}, \ldots, x_{p}, y\right)+\langle w, \mathbf{A} \mathbf{x}+B y-b\rangle \\
& +\frac{\beta}{2}\|\mathbf{A} \mathbf{x}+B y-b\|^{2}
\end{aligned}
$$

The Gauss-Seidel ADMM algorithm

0 . initialize $\mathbf{x}^{0}, y^{0}, w^{0}$

1. for $k=0,1, \ldots$ do
2. for $i=1, \ldots, p$ do
3. $\quad x_{i}^{k+1} \leftarrow \arg \min _{x_{i}} L_{\beta}\left(x_{<i}^{k+1}, x_{i}, x_{>i}^{k}, y^{k}, w^{k}\right)$;
4. $\quad y^{k+1} \leftarrow \arg \min _{y} L_{\beta}\left(\mathbf{x}^{k+1}, y, w^{k}\right)$;
5. $\quad w^{k+1} \leftarrow w^{k}+\beta\left(\mathbf{A} \mathbf{x}^{k+1}+B y^{k+1}-b\right)$;
6. if stopping conditions are satisfied, return $x_{1}^{k}, \ldots, x_{p}^{k}$ and y^{k}.

The overview of analysis

- Loss of convexity \Rightarrow no Fejer-monotonicity, or VI based analysis.
- Choice of Lyapunov function is critical. Following Hong-Luo-Razaviyayn'14, we use the augmented Lagrangian.
- The last block y plays an important role.

ADMM is better than ALM for a class of nonconvex problems

- ALM: nonsmoothness generally requires $\beta \rightarrow \infty$;
- ADMM: works with a finite β if the problem has the y-block (h, B) where h is smooth and $\operatorname{Im}(A) \subseteq \operatorname{Im}(B)$, even if the problem is nonsmooth
- in addition, ADMM has simpler subproblems

Analysis keystones

P1 (boundedness) $\left\{\mathbf{x}^{k}, y^{k}, w^{k}\right\}$ is bounded, $L_{\beta}\left(\mathbf{x}^{k}, y^{k}, w^{k}\right)$ is lower bounded;
P 2 (sufficient descent) for all sufficiently large k, we have

$$
\begin{aligned}
& L_{\beta}\left(\mathbf{x}^{k}, y^{k}, w^{k}\right)-L_{\beta}\left(\mathbf{x}^{k+1}, y^{k+1}, w^{k+1}\right) \\
& \geq C_{1}\left(\left\|B\left(y^{k+1}-y^{k}\right)\right\|^{2}+\sum_{i=1}^{p}\left\|A_{i}\left(x_{i}^{k}-x_{i}^{k+1}\right)\right\|^{2}\right)
\end{aligned}
$$

P3 (subgradient bound) exists $d^{k+1} \in \partial L_{\beta}\left(\mathbf{x}^{k+1}, y^{k+1}, w^{k+1}\right)$ such that

$$
\left\|d^{k+1}\right\| \leq C_{2}\left(\left\|B\left(y^{k+1}-y^{k}\right)\right\|+\sum_{i=1}^{p}\left\|A_{i}\left(x_{i}^{k+1}-x_{i}^{k}\right)\right\|\right)
$$

Similar to coordinate descent but treats w^{k} in a special manner

Proposition

Suppose that the sequence ($\mathrm{x}^{k}, y^{k}, w^{k}$) satisfies P1-P3.
(i) It has at least a limit point $\left(\mathbf{x}^{*}, y^{*}, w^{*}\right)$, and any limit point $\left(\mathbf{x}^{*}, y^{*}, w^{*}\right)$ is a stationary solution. That is, $0 \in \partial L_{\beta}\left(\mathbf{x}^{*}, y^{*}, w^{*}\right)$.
(ii) The running best rates ${ }^{a}$ of $\left\{\left\|B\left(y^{k+1}-y^{k}\right)\right\|^{2}+\sum_{i=1}^{p}\left\|A_{i}\left(x_{i}^{k}-x_{i}^{k+1}\right)\right\|^{2}\right\}$ and $\left\{\left\|d^{k+1}\right\|^{2}\right\}$ are $o\left(\frac{1}{k}\right)$.
(iii) If L_{β} is a $K \neq$ function, then converges globally to the point $\left(\mathbf{x}^{*}, y^{*}, w^{*}\right)$.

[^0]The proof is rather standard.

y^{k} controls w^{k}

- Notation: .+ denotes ${ }^{k+1}$
- Assumption: β is sufficiently large but fixed
- By combining y-update and w-update (plugging $w^{k}=w^{k-1}+\beta\left(\mathbf{A} \mathbf{x}^{k}+B y^{k}-b\right)$ into the y-optimality cond.)

$$
0=\nabla h\left(y^{k}\right)+B^{T} w^{k}, \quad k=1,2, \ldots
$$

- Assumption $\{b\} \cup \operatorname{Im}(A) \subseteq \operatorname{Im}(B) \Rightarrow w^{k} \in \operatorname{Im}(B)$
- Then, with additional assumptions, we have

$$
\left\|w^{+}-w^{k}\right\| \leq O\left(\left\|B y^{+}-B y^{k}\right\|\right)
$$

and

$$
L_{\beta}\left(x^{+}, y^{k}, w^{k}\right)-L_{\beta}\left(x^{+}, y^{+}, w^{+}\right) \geq O\left(\left\|B y^{+}-B y^{k}\right\|^{2}\right)
$$

(see the next slide for detailed steps)

Detailed steps

- Bound Δw by $\Delta B y$:
$\left\|w^{+}-w^{k}\right\| \leq C\left\|B^{T}\left(w^{+}-w^{k}\right)\right\|=O\left(\left\|\nabla h\left(y^{+}\right)-\nabla h\left(y^{k}\right)\right\|\right) \leq O\left(\left\|B y^{+}-B y^{k}\right\|\right)$
where $C:=\lambda_{++}^{-1 / 2}\left(B^{T} B\right)$, the 1st " \leq " follows from $w^{+}, w^{k} \in \operatorname{Im}(B)$, and the 2nd " \leq " follows from the assumption of Lipschitz sub-minimization path (see later)
- Then, smooth h leads to sufficient decent during the y - and w-updates:

$$
\begin{aligned}
& L_{\beta}\left(x^{+}, y^{k}, w^{k}\right)-L_{\beta}\left(x^{+}, y^{+}, w^{+}\right) \\
= & \left(h\left(y^{k}\right)-h\left(y^{+}\right)+\left\langle w^{+}, B y^{k}-B y^{+}\right\rangle\right)+\frac{\beta}{2}\left\|B y^{+}-B y^{k}\right\|^{2}-\frac{1}{\beta}\left\|w^{+}-w^{k}\right\|^{2} \\
\geq & -O\left(\left\|B y^{+}-B y^{k}\right\|^{2}\right)+\frac{\beta}{2}\left\|B y^{+}-B y^{k}\right\|^{2}-O\left(\left\|B y^{+}-B y^{k}\right\|\right) \\
& (\text { with suff. large } \beta) \\
= & O\left(\left\|B y^{+}-B y^{k}\right\|^{2}\right)
\end{aligned}
$$

where the " \geq " follows from the assumption of Lipschitz sub-minimization path (see later)

x^{k}-subproblems: fewer conditions on f, A

We only need conditions to ensure monotonicity and sufficient decent like

- $\left.L_{\beta}\left(x_{<i}^{+}, x_{i}^{k}, x_{>i}^{k}, y^{k}, w^{k}\right) \geq L_{\beta}\left(x_{<i}^{+}, x_{i}^{+}, x_{>i}^{k}, y^{k}, w^{k}\right)\right)$
- and sufficient descent:

$$
\left.L_{\beta}\left(x_{<i}^{+}, x_{i}^{k}, x_{>i}^{k}, y^{k}, w^{k}\right)-L_{\beta}\left(x_{<i}^{+}, x_{i}^{+}, x_{>i}^{k}, y^{k}, w^{k}\right)\right) \geq O\left(\left\|A_{i} x_{i}^{k}-A_{i} x_{i}^{+}\right\|^{2}\right)
$$

For Gauss-Seidel updates, the proof is inductive $i=p, p-1, \ldots, 1$
A sufficient condition for what we need:
$f\left(x_{1}, \ldots, x_{p}\right)$ has the form: smooth + separable-nonsmoooth

Remedy of nonconvexity: Prox-regularity

- A convex function f has subdifferentials in $\operatorname{int}(\operatorname{dom} f)$ and satisfies

$$
f(y) \geq f(x)+\langle d, y-x\rangle, \quad x, y \in \operatorname{dom} f, d \in \partial f(x)
$$

- A function f is prox-regular if $\exists \gamma$ such that

$$
f(y)+\frac{\gamma}{2}\|x-y\|^{2} \geq f(x)+\langle d, y-x\rangle, \quad x, y \in \operatorname{dom} f, d \in \partial f(x)
$$

where ∂f is the limiting subdifferential.

- Limitation: not satisfied by functions with sharps, e.g., $\ell_{1 / 2}$, which are often used in sparse optimization.

Restricted prox-regularity

- Motivation: your points do not land on the steep region around the sharp, which we call the exclusion set
- Exclusion set: for $M>0$, define

$$
S_{M}:=\{x \in \operatorname{dom}(\partial f):\|d\|>M \text { for all } d \in \partial f(x)\}
$$

idea: points in S_{M} are never visited (for a suff. large M)

- A function is restricted prox-regular if $\exists M, \gamma>0$ such that $S_{M} \subseteq \operatorname{dom}(\partial f)$ and any bounded $T \in \operatorname{dom}(f)$ $f(y)+\frac{\gamma}{2}\|x-y\|^{2} \geq f(x)+\langle d, y-x\rangle, \quad x, y \in T \backslash S_{M}, d \in \partial f(x),\|d\| \leq M$.
- Example: ℓ_{q} quasinorm, Schattern-q quasinorm, indicator function of compact smooth manifold

Main theorem 1

Assumptions: $\phi\left(x_{1}, \ldots, x_{n}, y\right)=f(\mathbf{x})+h(y)$
A1. the problem is feasible, the objective is feasible-coercive ${ }^{1}$
A2. $\operatorname{Im}(A) \subseteq \operatorname{Im}(B)$
A3. $f(\mathbf{x})=g(\mathbf{x})+f_{1}\left(x_{1}\right)+\cdots+f_{n}\left(x_{n}\right)$, where

- g is Lipschitz differentiable
- f_{i} is either restricted prox-regular, or continuous and piecewise linear ${ }^{2}$

A4. $h(y)$ is Lipschitz differentiable
A5. x and y subproblems have Lipschitz sub-minimization paths
Results: subsequential convergence to a stationary point from any start point; if L_{β} is $\mathrm{K} \not$, then whole-sequence convergence.

[^1]
Necessity of assumptions A2 A4

- Assumptions A2 A4 apply to the last block (h, B)
- A2 cannot be completely dropped.

Counter example: the 3-block divergence example by Chen-He-Ye-Yuan'13

- A4 cannot be completely dropped. Counter example:

$$
\begin{aligned}
& \underset{x, y}{\operatorname{minimize}}-|x|+|y| \\
& \text { subject to } x-y=0, x \in[-1,1]
\end{aligned}
$$

ADMM generates the alternating sequence $\pm\left(\frac{2}{\beta}, 0,1\right)$

Lipschitz sub-minimization path

- ADMM subproblem has the form

$$
y^{k} \in \underset{y}{\arg \min } h(y)+\frac{\beta}{2} \| B y+\text { constants } \|^{2}
$$

- Let $u=B y^{k}$. Then y^{k} is also the solution to

$$
\underset{y}{\operatorname{minimize}} h(y) \quad \text { subject to } B y=u
$$

- We assume a Lipschitz subminimization path

- Sufficient conditions: (i) smooth $h+$ full col-rank B, (ii) smooth and strongly convex h; (iii) not above but your subprob solver warmstarts and finds a nearby solution.

Main theorem 2

Assumptions: $\phi\left(x_{1}, \ldots, x_{n}, y\right)$ can be fully coupled

- Feasible, the objective is feasible-coercive
- $\operatorname{Im}(A) \subseteq \operatorname{Im}(B)$
- ϕ is Lipschitz differentiable
- x and y subproblems have Lipschitz sub-minimization paths

Results: subsequential convergence to a stationary point from any start point; if L_{β} is KL , then whole-sequence convergence.

5. Comparison with Recent Results

Compare to Hong-Luo-Razaviyayn'14

- Their assumptions are strictly stronger, e.g., only smooth functions
- $f=\sum_{i} f_{i}$, where f_{i} Lipschitz differentiable or convex
- h Lipschitz differentiable
- A_{i} has full col-rank and $B=I$
- Applications in consensus and sharing problems.

Compare to Li-Pong'14

- Their assumptions are strictly stronger
- $p=1$ and f is I.s.c.
- $h \in C^{2}$ is Lipschitz differentiable and strongly convex
- $A=I$ and B has full row-rank
- h is coercive and f is lower bounded.

Compare to Wang-Cao-Xu'14

- Analyzed Bregman ADMM, which reduces to ADMM with vanishing aux. functions.
- Their assumptions are strictly stronger
- B is invertible
- $f(x)=\sum_{i=1}^{p}$, where f_{i} is strongly convex
- h is Lipschitz differentiable and lower bounded.

6. Applications of Nonconvex ADMM with Convergence Guarantees

Application: statistical learning

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} r(x)+\sum_{i=1}^{p} l_{i}\left(A_{i} x-b_{i}\right)
$$

- r is regularization, l_{i} 's are fitting measures
- ADMM-ready formulation

$$
\begin{aligned}
& \underset{x,\left\{z_{i}\right\}}{\operatorname{minimize}} r(x)+\sum_{i=1}^{p} l_{i}\left(A_{i} z_{i}-b_{i}\right) \\
& \text { subject to } x=z_{i}, \quad i=1, \ldots, p
\end{aligned}
$$

- ADMM will converge if
- $r(x)=\|x\|_{q}^{q}=\sum_{i}\left|x_{i}\right|^{q}$, for $0<q \leq 1$, or piecewise linear
- $r(x)+\sum_{i=1}^{p} l_{i}\left(A_{i} x-b_{i}\right)$ is coercive
- l_{1}, \ldots, l_{p} are Lipschitz differentiable

Application: optimization on smooth manifold

```
minimize}J(x) subject to x\inS
```

- ADMM-ready formulation

$$
\begin{aligned}
& \underset{x, y}{\operatorname{minimize}} \iota_{S}(x)+J(y) \\
& \text { subject to } x-y=0
\end{aligned}
$$

- ADMM will converge if
- S is a compact smooth manifold, e.g., sphere, Stiefel, and Grassmann manifolds
- J is Lipschitz differentiable

Application: matrix/tensor decomposition

$$
\begin{aligned}
& \underset{X, Y, Z}{\operatorname{minimize}} r_{1}(X)+r_{2}(Y)+\|Z\|_{F}^{2} \\
& \text { subject to } X+Y+Z=\text { Input. }
\end{aligned}
$$

- Video decomposition: background + foreground + noise
- Hyperspectral decomposition: background + foreground + noise
- ADMM will converge if r_{1} and r_{2} satisfy our assumptions on f

6. Summary

Summary

- ADMM indeed works for some nonconvex problems!
- The theory indicates that ADMM works better than ALM when the problem has a block $(h(y), B)$ where h is smooth and $\operatorname{Im}(B)$ is dominant
- Future directions: weaker conditions, numerical results

Thank you!

Acknowledgements: Wei Shi, Ting Kei Pong, Qing Ling, Xin Liu, Yangyang Xu , and Yiqiu Dong

Supports: NSF
Reference: Yu Wang, Wotao Yin, and Jinshan Zeng. UCLA CAM 15-62.

[^0]: ${ }^{a} \mathrm{~A}$ nonnegative sequence a_{k} induces its running best sequence $b_{k}=\min \left\{a_{i}: i \leq k\right\}$; therefore, a_{k} has running best rate of $o(1 / k)$ if $b_{k}=o(1 / k)$.

[^1]: ${ }^{1}$ For feasible points $\left(x_{1}, \ldots, x_{p}, y\right)$, if $\left\|\left(x_{1}, \ldots, x_{n}, y\right)\right\| \rightarrow \infty$, then $\phi\left(x_{1}, \ldots, x_{n}, y\right) \rightarrow \infty$.
 ${ }^{2}$ e.g., anisotropic total variation, sorted ℓ_{1} function (nonconvex), ($-\ell_{1}$) function, continuous piece-wise linear approximation of a function

