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1. Alternating Direction Method of Multipliers (ADMM):
Background and Existing Work
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Basic Formulation

minimize
x,y

f(x) + h(y)

subject to Ax+By = b

• functions f, h can take the extended value ∞, can be nonsmooth
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ADMM

• Define the augmented Lagrangian

Lβ(x, y;w) = f(x) + h(y) + 〈w,Ax+By − b〉+ β

2 ‖Ax+By − b‖22

• Algorithm:
• xk+1 ∈ arg min

x

Lβ(x, yk;wk)

• yk+1 ∈ arg min
y

Lβ(xk+1, y;wk)

• wk+1 = wk + β(Axk+1 +Byk+1 − b)

• Feature: splits numerically awkward combinations of f and h

• Often, one or both subproblems are easy to solve
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Brief history (convex by default)

• 1950s, Douglas-Rachford Splitting (DRS) for PDEs

• ADM (ADMM) Glowinski and Marroco’75, Gabay and Mercier’76

• Convergence proof: Glowinski’83

• ADMM=dual-DRS (Gabay’83), ADMM=DRS and ADMM=dual-ADMM
(Eckstein’89, E.-Fukushima’94, Yan-Yin’14), ADMM=PPA (E.’92)

• if a subproblem is quadratic, equivalent under order swapping (Yan-Yin’14)

• Convergence rates (Monterio-Svaiter’12, He-Yuan’12, Deng-Yin’12,
Hong-Luo’13, Davis-Yin’14, ...)

• Accelerations (Goldstein et al’11, Ouyang et al’13)

• Nonconvex (Hong-Luo-Raz...’14, Wang-Cao-Xu’14, Li-Pong’14, this work)
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2. Nonconvex ADMM Applications
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Background extraction from video

• From observation b of a video Z, decompose it into low-rank background
L and sparse foreground S by

minimize
Z,L,S

Ψ(L) + Φ(S) + 1
2‖A(Z)− b‖2F

subject to L+ S = Z.

• Originally proposed by J.Wright et al. as Robust PCA

• Yuan-Yang’09 and Shen-Wen-Zhang’12 apply convex ADMM

• R.Chartrand’12 and Yang-Pong-Chen’14 use nonconvex regularization
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Results of `p-minimization for S from Yang-Pong-Chen’14
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Matrix completion with nonnegative factors

• From partial observations, recover a matrix Z ≈ XY where X,Y ≥ 0

• Xu-Yin-Wen-Zhang’12 applies ADMM to the model

minimize
X,Y,Z,U,V

1
2‖XY − Z‖

2
F + ι≥0(U) + ι≥0(V )

subject to X − U = 0

Y − V = 0

ProjΩ(Z) = observation.

• The objective is nonconvex due to XY
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Results from Xu-Yin-Wen-Zhang’12
Original images
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Results from Xu-Yin-Wen-Zhang’12
Recovered images (SR: sample ratio)
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Ptychographic phase retrieval

• Ptychography: a diffractive imaging technique that reconstructs an object
from a set of diffraction patterns produced by a moving probe. The probe
illuminates a portion of the object at a time.

Thibault-Menzel’13
• Phaseless measurements: bi = |FQix|, where x is the object and Qi is an

illumination matrix.
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• let |z| denote the amplitude vector of a complex vector z
• Wen-Yang-Liu-Marchesini’12 develops nonconvex ADMM for the model

minimize
x,z1,...,zp

1
2
∥∥|z1| − b1

∥∥2 + · · ·+ 1
2
∥∥|zp| − bp∥∥2

subject to zi −FQix = 0, i = 1, . . . , p.

|original “gold ball”| |prob| |recovered “gold ball”|
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Optimization on spherical and Stiefel manifolds

• Lai-Osher’12 develops nonconvex ADMM for

minimize
X,P

f(X) + ιP(P )

subject to X − P = 0.

• Examples of P
• Spherical manifold P = {P : ‖P (:, i)‖2 = 1}

• Stiefel manifold P = {P : PTP = I}

14 / 54



Chromatic-noise removal results from Lai-Osher’12

• “Curvilinear” is a feasible algorithm for manifold optimization from
Wen-Yin’10
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Mean-ρ-Basel portfolio optimization

• Goal: allocate assets for expected return, Basel regulation, and low risk
• Wen-Peng-Liu-Bai-Sun’13 applies nonconvex ADMM to solve this problem

minimize
u,x,y

ιU (u) + ιρBasel<C(x) + ρ(y)

subject to x+Ru = 0

y + Y u = 0.

• U = {u ≥ 0 : µTu ≥ r,1Tu = 1}

• ρBasel<C(−Ru) is Basel Accord requirement, calculated on certain
regulated dataset R

• ρ(−Y u) is the risk measure, such as variance, VaR, CVaR
• Their results are reportedly better than MIPs solved by CPLEX
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Other applications

• tensor factorization (Liavas-Sidiropoulos’14)

• compressive sensing (Chartrand-Wohlberg’13)

• optimal power flow (You-Peng’71)

• direction fields correction, global conformal mapping (Lai-Osher’14)

• image registration (Bouaziz-Tagliasacchi-Pauly’13)

• network inference (Miksik et al’14)
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3. A simple example
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A simple example

minimize
x,y∈R

1
2(x2 − y2)

subject to x− y = 0

x ∈ [−1, 1]
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• augmented Lagrangian

Lβ(x, y, w) := 1
2(x2 − y2) + ι[−1,1](x) + w(x− y) + β

2
∣∣x− y∣∣2

• ALM diverges for any fixed β (but will converge if β →∞)
• ADMM converges for any fixed β > 1
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Numerical ALM
• set β = 2, initialize x, y, w as iid randn

• ALM iteration:

(xk+1, yk+1) = arg min
x,y

Lβ(x, y, wk);

wk+1 = wk + β(xk+1 − yk+1);
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xk, yk oscillate, wk also does in a small amount
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why ALM diverges: (x, y) = arg minx,y Lβ(x, y, w) is too sensitive in w
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Contours of Lβ(x, y, w) for β = 2 and varying w
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ADMM

• ADMM following the order x→ y → w:
xk+1 = arg minx Lβ(x, yk, wk)

yk+1 = arg miny Lβ(xk+1, y, wk)

wk+1 = wk + αβ(xk+1 − yk+1)

or the order y → x→ w:
yk+1 = arg miny Lβ(xk, y, wk)

xk+1 = arg minx Lβ(x, yk+1, wk)

wk+1 = wk + αβ(xk+1 − yk+1)

• when β > 1, both x- and y-subproblems are (strongly) convex, so their
solutions are stable
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ADMM following the order x → y → w


xk+1 = proj[−1,1]

(
1

β+1 (βyk − wk)
)

yk+1 = 1
β−1 (βxk+1 + wk)

wk+1 = wk + αβ(xk+1 − yk+1)

• supposing α = 1 and eliminating yk ≡ −wk, we get{
xk+1 = proj[−1,1](−wk)

wk+1 = −1
β−1

(
βxk+1 + wk

) ⇒ wk+1 = −1
β − 1(βproj[−1,1](−w

k)+wk)

• pick β > 2 and change variable βw̄k ← wk

• if wk ∈ [−1, 1], then proj[−1,1](−wk) = −wk and wk+1 = wk

• o.w., w̄k+1 = 1
β−1 (sign(w̄k)− w̄k) so |w̄k+1| = 1

β−1

∣∣|w̄k| − 1
∣∣

{xk, yk, wk} converges geometrically with finite termination
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ADMM following the order y → x → w


yk+1 = 1

β−1 (βxk + wk)

xk+1 = proj[−1,1]
(

1
β+1 (βyk+1 − wk)

)
wk+1 = wk + αβ(xk+1 − yk+1)

• set α = 1 and introduce zk = 1
β2−1 (β2xk + wk); we get

zk+1 = 1
β − 1

(
βproj[−1,1](z

k)− zk
)
,

which is similar to wk+1 in ADMM x→ y → w.

• xk+1 = proj[−1,1](zk) and wk+1 = βxk+1 − (β + 1)zk

• {xk, yk, wk} converges geometrically with finite termination
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Numerical test: finite convergence

ADMM x→ y → w
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Both iterations converge to a global solution in 3 steps
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Why ADMM converges? Reduces to convex coordinate descent

• For this problem, we can show yk ≡ −wk for ADMM x→ y → w

• Setting w = −y yields a convex function:

Lβ(x, y, w)
∣∣
w=−y

= 1
2(x2 − y2) + ι[−1,1](x)− y(x− y) + β

2
∣∣x− y∣∣2

= β + 1
2 |x− y|2 + ι[−1,1](x)

=: f(x, y)

• ADMM x→ y → w = coordinate descent to the convex f(x, y):{
xk+1 = arg minx f(x, yk)

yk+1 = yk − ρ d
dy f(xk+1, yk)

where ρ = β
β2−1
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4. New convergence results
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The generic model

minimize
x1,...,xp,y

φ(x1, . . . , xp, y) (1)

subject to A1x1 + · · ·+Apxp +By = b,

• we single out y because of its unique role: “locking” the dual variable wk
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Notation:

• x := [x1; . . . ;xp] ∈ Rn

• x<i := [x1; . . . ;xi−1]

• x>i := [xi+1; . . . ;xp]

• A := [A1 · · · Ap] ∈ Rm×n

• Ax :=
∑p

i=1 Aixi ∈ Rm.
• Augmented Lagrangian:

Lβ(x1, . . . , xp, y, w) = φ(x1, . . . , xp, y) + 〈w,Ax +By − b〉

+ β

2
∥∥Ax +By − b‖2
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The Gauss-Seidel ADMM algorithm

0. initialize x0, y0, w0

1. for k = 0, 1, ... do
2. for i = 1, . . . , p do
3. xk+1

i ← arg minxi
Lβ(xk+1

<i , xi, x
k
>i, y

k, wk);
4. yk+1 ← arg miny Lβ(xk+1, y, wk);
5. wk+1 ← wk + β

(
Axk+1 +Byk+1 − b

)
;

6. if stopping conditions are satisfied, return xk1 , . . . , x
k
p and yk.
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The overview of analysis

• Loss of convexity ⇒ no Fejer-monotonicity, or VI based analysis.

• Choice of Lyapunov function is critical. Following
Hong-Luo-Razaviyayn’14, we use the augmented Lagrangian.

• The last block y plays an important role.
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ADMM is better than ALM for a class of nonconvex problems

• ALM: nonsmoothness generally requires β →∞;

• ADMM: works with a finite β if the problem has the y-block (h,B) where
h is smooth and Im(A) ⊆ Im(B), even if the problem is nonsmooth

• in addition, ADMM has simpler subproblems
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Analysis keystones

P1 (boundedness) {xk, yk, wk} is bounded, Lβ(xk, yk, wk) is lower bounded;
P2 (sufficient descent) for all sufficiently large k, we have

Lβ(xk, yk, wk)− Lβ(xk+1, yk+1, wk+1)

≥ C1
(
‖B(yk+1 − yk)‖2 +

p∑
i=1

‖Ai(xki − xk+1
i )‖2

)
,

P3 (subgradient bound) exists dk+1 ∈ ∂Lβ(xk+1, yk+1, wk+1) such that

‖dk+1‖ ≤ C2
(
‖B(yk+1 − yk)‖+

p∑
i=1

‖Ai(xk+1
i − xki )‖

)
.

Similar to coordinate descent but treats wk in a special manner

33 / 54



Proposition

Suppose that the sequence (xk, yk, wk) satisfies P1–P3.
(i) It has at least a limit point (x∗, y∗, w∗), and any limit point (x∗, y∗, w∗) is
a stationary solution. That is, 0 ∈ ∂Lβ(x∗, y∗, w∗).

(ii) The running best rates a of {‖B(yk+1 − yk)‖2 +
∑p

i=1 ‖Ai(x
k
i − xk+1

i )‖2}
and {‖dk+1‖2} are o( 1

k
).

(iii) If Lβ is a K L function, then converges globally to the point (x∗, y∗, w∗).
aA nonnegative sequence ak induces its running best sequence bk = min{ai : i ≤ k}; therefore, ak has

running best rate of o(1/k) if bk = o(1/k).

The proof is rather standard.
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yk controls wk

• Notation: ·+ denotes ·k+1

• Assumption: β is sufficiently large but fixed

• By combining y-update and w-update
(plugging wk = wk−1 + β(Axk +Byk − b) into the y-optimality cond.)

0 = ∇h(yk) +BTwk, k = 1, 2, . . .

• Assumption {b} ∪ Im(A) ⊆ Im(B) ⇒ wk ∈ Im(B)

• Then, with additional assumptions, we have

‖w+ − wk‖ ≤ O(‖By+ −Byk‖)

and
Lβ(x+, yk, wk)− Lβ(x+, y+, w+) ≥ O(‖By+ −Byk‖2)

(see the next slide for detailed steps)

35 / 54



Detailed steps
• Bound ∆w by ∆By:

‖w+−wk‖ ≤ C‖BT (w+−wk)‖ = O(‖∇h(y+)−∇h(yk)‖) ≤ O(‖By+−Byk‖)

where C := λ
−1/2
++ (BTB), the 1st “≤” follows from w+, wk ∈ Im(B), and

the 2nd “≤” follows from the assumption of Lipschitz sub-minimization
path (see later)

• Then, smooth h leads to sufficient decent during the y- and w-updates:

Lβ(x+, yk, wk)− Lβ(x+, y+, w+)

=
(
h(yk)− h(y+) + 〈w+, Byk −By+〉

)
+ β

2 ‖By
+ −Byk‖2 − 1

β
‖w+ − wk‖2

≥−O(‖By+ −Byk‖2) + β

2 ‖By
+ −Byk‖2 −O(‖By+ −Byk‖)

(with suff. large β)

=O(‖By+ −Byk‖2)

where the “≥” follows from the assumption of Lipschitz sub-minimization
path (see later)
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xk-subproblems: fewer conditions on f,A

We only need conditions to ensure monotonicity and sufficient decent like

• Lβ(x+
<i, x

k
i , x

k
>i, y

k, wk) ≥ Lβ(x+
<i, x

+
i , x

k
>i, y

k, wk))

• and sufficient descent:

Lβ(x+
<i, x

k
i , x

k
>i, y

k, wk)−Lβ(x+
<i, x

+
i , x

k
>i, y

k, wk)) ≥ O(‖Aixki−Aix+
i ‖

2)

For Gauss-Seidel updates, the proof is inductive i = p, p− 1, . . . , 1

A sufficient condition for what we need:
f(x1, . . . , xp) has the form: smooth + separable-nonsmoooth
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Remedy of nonconvexity: Prox-regularity

• A convex function f has subdifferentials in int(domf) and satisfies

f(y) ≥ f(x) + 〈d, y − x〉, x, y ∈ domf, d ∈ ∂f(x)

• A function f is prox-regular if ∃ γ such that

f(y) + γ

2 ‖x− y‖
2 ≥ f(x) + 〈d, y − x〉, x, y ∈ domf, d ∈ ∂f(x)

where ∂f is the limiting subdifferential.

• Limitation: not satisfied by functions with sharps, e.g., `1/2, which are
often used in sparse optimization.

38 / 54



Restricted prox-regularity

• Motivation: your points do not land on the steep region around the sharp,
which we call the exclusion set

• Exclusion set: for M > 0, define

SM := {x ∈ dom(∂f) : ‖d‖ > M for all d ∈ ∂f(x)}

idea: points in SM are never visited (for a suff. large M)

• A function is restricted prox-regular if ∃ M,γ > 0 such that
SM ⊆ dom(∂f) and any bounded T ∈ dom(f)

f(y)+γ

2 ‖x−y‖
2 ≥ f(x)+〈d, y−x〉, x, y ∈ T\SM , d ∈ ∂f(x), ‖d‖ ≤M.

• Example: `q quasinorm, Schattern−q quasinorm, indicator function of
compact smooth manifold
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Main theorem 1

Assumptions: φ(x1, . . . , xn, y) = f(x) + h(y)

A1. the problem is feasible, the objective is feasible-coercive1

A2. Im(A) ⊆ Im(B)

A3. f(x) = g(x) + f1(x1) + · · ·+ fn(xn), where
• g is Lipschitz differentiable
• fi is either restricted prox-regular, or continuous and piecewise linear2

A4. h(y) is Lipschitz differentiable

A5. x and y subproblems have Lipschitz sub-minimization paths

Results: subsequential convergence to a stationary point from any start point;
if Lβ is K L, then whole-sequence convergence.

1For feasible points (x1, . . . , xp, y), if ‖(x1, . . . , xn, y)‖ → ∞, then φ(x1, . . . , xn, y)→∞.
2e.g., anisotropic total variation, sorted `1 function (nonconvex), (−`1) function, continuous piece-wise linear

approximation of a function
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Necessity of assumptions A2 A4

• Assumptions A2 A4 apply to the last block (h,B)

• A2 cannot be completely dropped.
Counter example: the 3-block divergence example by Chen-He-Ye-Yuan’13

• A4 cannot be completely dropped.
Counter example:

minimize
x,y

− |x|+ |y|

subject to x− y = 0, x ∈ [−1, 1].

ADMM generates the alternating sequence ±( 2
β
, 0, 1)
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Lipschitz sub-minimization path

• ADMM subproblem has the form

yk ∈ arg min
y

h(y) + β

2 ‖By + constants‖2

• Let u = Byk. Then yk is also the solution to

minimize
y

h(y) subject to By = u.

• We assume a Lipschitz subminimization path

• Sufficient conditions: (i) smooth h + full col-rank B, (ii) smooth and
strongly convex h; (iii) not above but your subprob solver warmstarts and
finds a nearby solution.
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Main theorem 2

Assumptions: φ(x1, . . . , xn, y) can be fully coupled

• Feasible, the objective is feasible-coercive

• Im(A) ⊆ Im(B)

• φ is Lipschitz differentiable

• x and y subproblems have Lipschitz sub-minimization paths

Results: subsequential convergence to a stationary point from any start point;
if Lβ is KL, then whole-sequence convergence.
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5. Comparison with Recent Results
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Compare to Hong-Luo-Razaviyayn’14

• Their assumptions are strictly stronger, e.g., only smooth functions
• f =

∑
i
fi, where fi Lipschitz differentiable or convex

• h Lipschitz differentiable
• Ai has full col-rank and B = I

• Applications in consensus and sharing problems.
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Compare to Li-Pong’14

• Their assumptions are strictly stronger
• p = 1 and f is l.s.c.
• h ∈ C2 is Lipschitz differentiable and strongly convex
• A = I and B has full row-rank
• h is coercive and f is lower bounded.
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Compare to Wang-Cao-Xu’14

• Analyzed Bregman ADMM, which reduces to ADMM with vanishing aux.
functions.

• Their assumptions are strictly stronger
• B is invertible
• f(x) =

∑p

i=1, where fi is strongly convex
• h is Lipschitz differentiable and lower bounded.
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6. Applications of Nonconvex ADMM
with Convergence Guarantees
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Application: statistical learning

minimize
x∈Rn

r(x) +
p∑
i=1

li(Aix− bi)

• r is regularization, li’s are fitting measures

• ADMM-ready formulation

minimize
x,{zi}

r(x) +
p∑
i=1

li(Aizi − bi)

subject to x = zi, i = 1, . . . , p.

• ADMM will converge if
• r(x) = ‖x‖qq =

∑
i
|xi|q, for 0 < q ≤ 1, or piecewise linear

• r(x) +
∑p

i=1 li(Aix− bi) is coercive
• l1, . . . , lp are Lipschitz differentiable
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Application: optimization on smooth manifold

minimize
x

J(x) subject to x ∈ S.

• ADMM-ready formulation

minimize
x,y

ιS(x) + J(y)

subject to x− y = 0.

• ADMM will converge if
• S is a compact smooth manifold, e.g., sphere, Stiefel, and Grassmann

manifolds
• J is Lipschitz differentiable
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Application: matrix/tensor decomposition

minimize
X,Y,Z

r1(X) + r2(Y ) + ‖Z‖2F

subject to X + Y + Z = Input.

• Video decomposition: background + foreground + noise

• Hyperspectral decomposition: background + foreground + noise

• ADMM will converge if r1 and r2 satisfy our assumptions on f
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6. Summary
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Summary

• ADMM indeed works for some nonconvex problems!

• The theory indicates that ADMM works better than ALM when the
problem has a block (h(y), B) where h is smooth and Im(B) is dominant

• Future directions: weaker conditions, numerical results
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