Equilibrium Shape Fluctuations Of Heterogeneous Biological Membranes

David Rower advised by Paul Atzberger

Outline

- 1) Background: experiment and theory
- 2) Single Bead Model
- 3) Bending rigidity estimation
- 4) Toy discussion of adhesion
- 5) Future work

Biological Membranes: Motivation

from Soft Matter, 2009, 5, 3174-3186

Relevance

- Endo/exocytosis
- Cell division
- Autophagy
- Tubulation

Recent Experiment

Fluorescent Imaging: Baumgart et al. (2003)

Recent Experiment

Fluorescent Imaging: Baumgart et al. (2003)

Recent Simulation

Membrane stiffness decreases with concentration of integral membrane proteins: Fowler et al. (2016)

Recent Experiment

Fluorescent Imaging: Baumgart et al. (2003)

Recent Simulation

Membrane stiffness decreases with concentration of integral membrane proteins: Fowler et al. (2016)

"...bending stiffness decreased monotonously with increasing curvature ...": Tian et al. (2009) (in context of tubular membranes)

Theory

Differential Geometry (Curvature)

from http://brickisland.net/cs177/?p=144

Theory

Differential Geometry (Curvature)

Bending energy: Helfrich (1986)

from http://brickisland.net/cs177/?p=144

Single-Bead Model

from Yuan et. al. (Physical Review E. Vol 82, 011905)

Single-Bead Model

from Yuan et. al. (Physical Review E. Vol 82, 011905)

$$U(\mathbf{r}_{ij}, \mathbf{n}_i, \mathbf{n}_j) = \begin{cases} u_R(r) + [1 - \phi(\mathbf{\hat{r}}_{ij}, \mathbf{n}_i, \mathbf{n}_j)]\epsilon, & r < r_{\min} \\ u_A(r)\phi(\mathbf{\hat{r}}_{ij}, \mathbf{n}_i, \mathbf{n}_j), & r_{\min} < r < r_c \end{cases}$$

$$u(r) = \begin{cases} u_R(r) = \epsilon \left[\left(\frac{r_{\min}}{r}\right)^4 - 2\left(\frac{r_{\min}}{r}\right)^2 \right], & r < r_{\min} \\ u_A(r) = -\epsilon \cos^{2\zeta} \left[\frac{\pi}{2} \frac{(r - r_{\min})}{(r_c - r_{\min})} \right], & r_{\min} < r < r_c \end{cases}$$

$$a = (\mathbf{n}_i \times \hat{\mathbf{r}}_{ij}) \cdot (\mathbf{n}_j \times \hat{\mathbf{r}}_{ij}) + \sin \theta_0 (\mathbf{n}_j - \mathbf{n}_i) \cdot \hat{\mathbf{r}}_{ij} - \sin^2 \theta_0$$
$$\phi = 1 + \mu [a(\hat{\mathbf{r}}_{ij}, \mathbf{n}_i, \mathbf{n}_j) - 1]$$

Parameters	Interpretations
r_{min}	potential minimum distance
r_c	potential cutoff distance
ζ	steepness of repulsive branch
$ heta_0$	preferred relative orientation
μ	strength of orientation penalty

n_{hc}= 0.000

How to quantify shape fluctuations?

• Two-point surface correlation function

- Two-point surface correlation function
- Surface autocorrelation function

- Two-point surface correlation function
- Surface autocorrelation function
- Fluctuation spectrum of continuum representation

- Two-point surface correlation function
- Surface autocorrelation function
- Fluctuation spectrum of continuum representation

Shape Fluctuations: Two-Point Surface Correlation

Sampling Procedure

- 1. Pick random point
- 2. Rotate point to north pole
- 3. Random rotation about z-axis
- 4. Sample correlation function with north pole as center

Shape Fluctuations: Two-Point Surface Correlation

Shape Fluctuations: Two-Point Surface Correlation

More complex shapes cannot be described when homogenizing over rotations...

- Two-point surface correlation function
- Surface autocorrelation function
- Fluctuation spectrum of continuum representation

Continuum Representation

 $(\mathbf{r}, oldsymbol{ heta}, oldsymbol{\phi})$

Continuum Representation

Continuum Representation

$$\begin{split} & (\theta,\phi) = \sum_{i} \alpha_{i} Y^{i}(\theta,\phi) \\ & \alpha_{i} = \int_{0}^{\pi} \int_{0}^{2\pi} r(\theta,\phi) (Y^{i}(\theta,\phi))^{*} \sin(\theta) d\phi d\theta \\ & \quad (\text{Evaluated with Lebedev Quadrature}) \end{split}$$

 $r(\theta, \phi; \boldsymbol{\alpha})$

 $(\mathbf{r}, \boldsymbol{\theta}, \boldsymbol{\phi})$

Bending Rigidity Estimation: Mean Shapes

Bending Rigidity Estimation: Mean Shapes

Surface:

Energy Functional:

$$r(\theta,\phi) = \sum_{i} \alpha_{i} Y^{i}(\theta,\phi) \qquad E[\boldsymbol{\alpha}] = \int \frac{k_{c}}{2} [2H(\theta,\phi;\boldsymbol{\alpha}) + c_{0}]^{2} dA$$

Surface:

Energy Functional:

$$r(\theta,\phi) = \sum_{i} \alpha_{i} Y^{i}(\theta,\phi) \qquad E[\alpha] = \int \frac{k_{c}}{2} [2H(\theta,\phi;\alpha) + c_{0}]^{2} dA$$

Expansion about mean shape:

$$E[\boldsymbol{\alpha} + \lambda \mathbf{b}] = E[\boldsymbol{\alpha}] + \lambda (\nabla E|_{\boldsymbol{\alpha}})^T \mathbf{b} + \frac{\lambda^2}{2} \mathbf{b}^T \text{Hess}[E]|_{\boldsymbol{\alpha}} \mathbf{b} + \mathcal{O}(\lambda^3)$$

Surface:

Energy Functional:

 $r(\theta,\phi) = \sum_{i} \alpha_{i} Y^{i}(\theta,\phi) \qquad E[\boldsymbol{\alpha}] = \int \frac{k_{c}}{2} [2H(\theta,\phi;\boldsymbol{\alpha}) + c_{0}]^{2} dA$

Expansion about mean shape:

$$E[\boldsymbol{\alpha} + \lambda \mathbf{b}] = E[\boldsymbol{\alpha}] + \lambda (\nabla E|_{\boldsymbol{\alpha}})^T \mathbf{b} + \frac{\lambda^2}{2} \mathbf{b}^T \text{Hess}[E]|_{\boldsymbol{\alpha}} \mathbf{b} + \mathcal{O}(\lambda^3)$$

Surface:

Energy Functional:

 $r(\theta,\phi) = \sum_{i} \alpha_{i} Y^{i}(\theta,\phi) \qquad E[\alpha] = \int \frac{k_{c}}{2} [2H(\theta,\phi;\alpha) + c_{0}]^{2} dA$

Expansion about mean shape:

$$E[\boldsymbol{\alpha} + \lambda \mathbf{b}] = E[\boldsymbol{\alpha}] + \lambda (\nabla E|_{\boldsymbol{\alpha}})^T \mathbf{b} + \frac{\lambda^2}{2} \mathbf{b}^T \text{Hess}[E]|_{\boldsymbol{\alpha}} \mathbf{b} + \mathcal{O}(\lambda^3)$$

Equilibrium Statistical Mechanics:

 $p(\boldsymbol{\alpha} + \mathbf{b}) \propto \exp\left[-\beta E[\boldsymbol{\alpha} + \mathbf{b}]\right]$

Surface:

Energy Functional:

 $r(\theta,\phi) = \sum_{i} \alpha_{i} Y^{i}(\theta,\phi) \qquad E[\boldsymbol{\alpha}] = \int \frac{k_{c}}{2} [2H(\theta,\phi;\boldsymbol{\alpha}) + c_{0}]^{2} dA$

Expansion about mean shape:

$$E[\boldsymbol{\alpha} + \lambda \mathbf{b}] = E[\boldsymbol{\alpha}] + \lambda (\nabla E|_{\boldsymbol{\alpha}})^T \mathbf{b} + \frac{\lambda^2}{2} \mathbf{b}^T \text{Hess}[E]|_{\boldsymbol{\alpha}} \mathbf{b} + \mathcal{O}(\lambda^3)$$

$$p(\boldsymbol{\alpha} + \mathbf{b}) \propto \exp\left[-\beta E[\boldsymbol{\alpha} + \mathbf{b}]\right] \propto \exp\left[-\frac{1}{2}\mathbf{b}^T \mathbf{C}^{-1}\mathbf{b}\right]$$

Surface:

Energy Functional:

 $r(\theta,\phi) = \sum_{i} \alpha_{i} Y^{i}(\theta,\phi) \qquad E[\boldsymbol{\alpha}] = \int \frac{k_{c}}{2} [2H(\theta,\phi;\boldsymbol{\alpha}) + c_{0}]^{2} dA$

Expansion about mean shape:

$$E[\boldsymbol{\alpha} + \lambda \mathbf{b}] = E[\boldsymbol{\alpha}] + \lambda (\nabla E|_{\boldsymbol{\alpha}})^T \mathbf{b} + \frac{\lambda^2}{2} \mathbf{b}^T \text{Hess}[E]|_{\boldsymbol{\alpha}} \mathbf{b} + \mathcal{O}(\lambda^3)$$

$$p(\boldsymbol{\alpha} + \mathbf{b}) \propto \exp\left[-\beta E[\boldsymbol{\alpha} + \mathbf{b}]\right] \propto \exp\left[-\frac{1}{2}\mathbf{b}^T \mathbf{C}^{-1}\mathbf{b}\right]$$

where $\mathbf{C}^{-1} \equiv \beta k_c \text{Hess}\left[\int [2H(\theta, \phi; \boldsymbol{\alpha}) + c_0]^2 dA\right]\Big|_{\boldsymbol{\alpha}}$

$$\mathbf{C}^{-1} \equiv \beta k_c \mathrm{Hess} \left[\int [2H(\theta, \phi; \boldsymbol{\alpha}) + c_0]^2 dA \right] \Big|_{\boldsymbol{\alpha}}$$

Analytic expression?

$$\mathbf{C}^{-1} \equiv \beta k_c \mathrm{Hess} \left[\int [2H(\theta, \phi; \boldsymbol{\alpha}) + c_0]^2 dA \right] \Big|_{\boldsymbol{\alpha}}$$

Analytic expression?

$$c_0 = -2r_0^{-1}$$

$$\delta^2 E = \frac{k_c}{2r_0^2} \sum_{l,m} |a_{lm}|^2 (l^2(l+1)^2 - 4)$$

Bending Rigidity Estimation: Results

Equilibrium Statistical Mechanics:

$$\mathbf{C}^{-1} \equiv \beta k_c \text{Hess} \left[\int [2H(\theta, \phi; \boldsymbol{\alpha}) + c_0]^2 dA \right] \Big|_{\boldsymbol{\alpha}}$$

Analytic expression?

$$c_0 = -2r_0^{-1}$$

$$\delta^2 E = \frac{k_c}{2r_0^2} \sum_{l,m} |a_{lm}|^2 (l^2(l+1)^2 - 4)$$

Equilibrium Statistical Mechanics:

$$\mathbf{C}^{-1} \equiv \beta k_c \mathrm{Hess} \left[\int [2H(\theta, \phi; \boldsymbol{\alpha}) + c_0]^2 dA \right] \Big|_{\boldsymbol{\alpha}}$$

Analytic expression?

$$c_0 = -2r_0^{-1}$$

$$\delta^2 E = \frac{k_c}{2r_0^2} \sum_{l,m} |a_{lm}|^2 (l^2(l+1)^2 - 4)$$

Our Estimation: 1) Calculate matrix from theory 1) Mean curvature: Sympy

Equilibrium Statistical Mechanics:

$$\mathbf{C}^{-1} \equiv \beta k_c \mathrm{Hess} \left[\int [2H(\theta, \phi; \boldsymbol{\alpha}) + c_0]^2 dA \right] \Big|_{\boldsymbol{\alpha}}$$

Analytic expression?

$$c_0 = -2r_0^{-1}$$
$$\delta^2 E = \frac{k_c}{2r_0^2} \sum_{l,m} |a_{lm}|^2 (l^2(l+1)^2 - 4)$$

Our Estimation:

Calculate matrix from theory

 Mean curvature: Sympy
 Integral: Lebedev quadrature

Equilibrium Statistical Mechanics:

$$\mathbf{C}^{-1} \equiv \beta k_c \mathrm{Hess} \left[\int [2H(\theta, \phi; \boldsymbol{\alpha}) + c_0]^2 dA \right] \Big|_{\boldsymbol{\alpha}}$$

Analytic expression?

$$c_0 = -2r_0^{-1}$$
$$\delta^2 E = \frac{k_c}{2r_0^2} \sum_{l,m} |a_{lm}|^2 (l^2(l+1)^2 - 4)$$

Our Estimation:

1) Calculate matrix from theory 1) Mean curvature: Sympy

- 2) Integral: Lebedev quadrature
- 3) Hessian: central differencing

Equilibrium Statistical Mechanics:

$$\mathbf{C}^{-1} \equiv \beta k_c \mathrm{Hess} \left[\int [2H(\theta, \phi; \boldsymbol{\alpha}) + c_0]^2 dA \right] \Big|_{\boldsymbol{\alpha}}$$

Analytic expression?

$$c_0 = -2r_0^{-1}$$

$$\delta^2 E = \frac{k_c}{2r_0^2} \sum_{l,m} |a_{lm}|^2 (l^2(l+1)^2 - 4)$$

Our Estimation:

Calculate matrix from theory

 Mean curvature: Sympy
 Integral: Lebedev quadrature
 Hessian: central differencing

 Compare with cov(b, b) from simulations

$$\mathbf{C}^{-1} \equiv \beta k_c \mathrm{Hess}\left[\int [2H(\theta, \phi; \boldsymbol{\alpha}) + c_0]^2 dA \right] \Big|_{\boldsymbol{\alpha}}$$

Bending Rigidity Estimation: Results

Bending Rigidity Estimation: Results

Summary

Domains form from embedded high-curvature species.

Using naive theory for bending-rigidity estimation is a decent start

- Gives right monotonic relationship
- Linearized theory falls apart as shape becomes more irregular

Heterogeneities influencing geometry may be a key component in adhesion dynamics.

Next Steps

Develop more efficient/robust numerical methods for Hessian.

Explore effects of much higher heterogenieties on bending rigidity.

Explore effects of fluctuating hydrodynamics (coupling between coarse-grained beads and continuum stochastic fields representing solvent).

Acknowledgements

Thanks to Dr. Atzberger for many insightful discussions

Thanks to Ben Gross for many useful python scripts

UCSB CCS

DOE ASCR CM4 DE-SC0009254

NSF Grant DMS - 1616353

NSF CAREER Grant DMS-0956210

References

1. One-particle-thick, Solvent-free, Coarse-grained Model for Biological and Biomimetic Fluid Membranes, H. Yuan, C. Huang, J. Li, G. Lykotrafitis, and S. Zhang, Phys. Rev. E, (2010).

2. Dynamic shape transformations of fluid vesicles, H. Yuan, C. Huang and S. Zhang, Soft Matter, (2010).

3. *Membrane-Mediated Inter-Domain Interactions,* H. Yuan, C. Huang and S. Zhang, BioNanoSci, (2011).

4. *Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension,* T. Baumgart, S. T. Hess and W. W. Webb, Nature, (2003)

5. Computer Simulations of Self-Assembled Membranes, J. M. Drouffe, A. C. Maggs and S. Leibler, Science, (1991).

6. Fluctuating Hydrodynamics Methods for Dynamic Coarse-Grained Implicit-Solvent Simulations in LAMMPS, Y. Wang,

J. K. Sigurdsson, and P.J. Atzberger, SIAM J. Sci. Comput., 38(5), S62–S77, (2016).

7. *Simulation of Osmotic Swelling by the Stochastic Immersed Boundary Method,* C.H. Wu, T.G. Fai, P.J. Atzberger, and C.S. Peskin, SIAM J. Sci. Comput., 37, (2015).

8. *Hydrodynamic Coupling of Particle Inclusions Embedded in Curved Lipid Bilayer Membranes,* J.K. Sigurdsson and P.J. Atzberger, 12, 6685-6707, Soft Matter, The Royal Society of Chemistry, (2016).

Backup Slides

Bending Rigidity Estimation: Results

Bending Rigidity Estimation: Results

