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Introduction

Investigating complex physical phenomena requires modelling

Models are subject to unavoidable uncertainties (in measurements,
due to neglect of physical effects, ...)

Reliable statements can still be achieved by:

Quantitative representation of uncertainties

Techniques to estimate quantities of interest in presence of these
uncertainties

Often we need to evaluate integrals for which Monte Carlo methods
prove as suitable estimation techniques!
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Formalism for physical model

F(α) = X

F : forward model (ODE, PDE, SDE, SPDE, ...)

α : random input parameters (initial conditions, model parameters, ...)

X : solution to F and α - random as such!

Note that α and X are generally infinite-dimensional objects, thus their
exact generation is in practice rarely possible!
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Discretised representation and problem formulation

Assume α can be approximated by a random vector ~αn ∈ Rn

Assume there is a discretisation Fh of F with associated solution
random vector ~Xm ∈ Rm

⇒ Discrete formalism:

Fh(~αn) = ~Xm

Let Qm := G(~Xm) be some quantity of interest, where G is a
deterministic and continuous functional

For some generally inaccessible random variable Q with Qm → Q, we
want to estimate E[Q]
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Predator-prey model

System of first-order, non-linear,
ordinary differential equations
(ODEs), modelling the dynamics
of two interacting species (predator
and prey) in time:

~̇u =

(
u̇1
u̇2

)
=

(
u1(1− u2)
u2(u1 − 1)

)
.

Initial state ~u0 uncertain, modelled as ~u0 ∼ U(Γ)

Γ := ~̄u0 + [−ε, ε]2 for some deterministic ~̄u0 ∈ (0,∞)2

Aim: estimate E[u1(T )] for some T > 0

Tobias Schwedes (Imperial College London) 1st October 2016 5 / 20



Predator-prey model (continued)

With the notation from above, it holds

Input parameter: α = ~u0

Solution: X = ~u(0 < t < T ) = F(~u0)

Inaccessible quantity of interest: Q = u1(T )

Discretised forward model Fh is the solution operator of an explicit
forward Euler scheme with step size h = T/m for some m ∈ N

~Xm = Fh(~u0) is m-dimensional with ith component being the solution
of the Euler scheme for u1 at time i · T/m

Qm is the last value of ~Xm
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Standard Monte Carlo

MCN(Q) :=
1

N

N∑
i=1

Q
(i)
m

N large
≈ E[Qm]

m large
≈ E[Q]

Q
(i)
m , i = 1, ...,N are iid samples of Qm

MCN(Q) is a consistent, unbiased, asymptotically normal estimator
for E[Qm] with mean squared error (MSE)

MSE [MCN(Q)] =
1

N
Var[Qm]︸ ︷︷ ︸

sampling error

+
(
E [Qm]− E[Q]

)2
︸ ︷︷ ︸

numerical error

,

Rate of convergence is O(N−1/2), independently of dimensionality!

Problem: Requiring N = O(ε−2) samples to achieve ε accuracy while
each sample requires solving Fh(~αn) = ~Xm
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Multi-level Monte Carlo (MLMC)

Idea: use samples from different resolutions instead of just a single
one to reduce computational cost (Giles, 2008 & Heinrich, 2001)

Qm`
= G(~Xm`

) with m` discretisation points (` = 0, ..., L), where
m0 < ... < mL =: m

Due to linearity of expectation, ∆` := Qm`
− Qm`−1

and ∆0 := Qm0 ,

E[Qm] = E[Qm0 ] +
L∑

`=1

E
[
Qm`
− Qm`−1

]
=

L∑
`=1

E [∆`]

Estimate each correction term E[∆`] independently from all other
levels via standard MC, leading to

MLMC~N(Q) :=
L∑

`=1

MCN`
(∆`)
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MLMC (continued)

Samples Q
(i)
m` and Q

(i)
m`−1 in ∆

(i)
` := Q

(i)
m` −Q

(i)
m`−1 are generated by the

same underlying random parameters

For the MSE, it holds

MSE
[
MLMC~N(Q)

]
=

L∑
`=1

1

N`
Var [∆`] +

(
E [Qm]− E[Q]

)2
.

Assuming Qm → Q in L2 implies Var[∆`]→ 0, indicating that N`

decreases in ` (fewer samples on finer resolutions)

However sampling on coarse levels is cheap such that overall cost of
achieving ε accuracy is reduced compared to standard MC
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Predator-prey model (MLMC)

Figure : Left plots of cost in FLOPs versus number of discretisation points m for
a decreasing tolerance of the MSE. Right corresponding estimator variance versus
cost in FLOPs.
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Further work

Unbiased MLMC (Rhee & Glynn, 2012 & McLeish, 2010):
Randomise number of levels L and thereby remove numerical error!

Quasi-Monte Carlo (QMC): Use deterministic low-discrepancy
samples instead of pseudo-random numbers

Convergence rates close to O(N−1)

Biased, lack of practical error estimates

Randomised QMC (rQMC): Use QMC, but randomise samples and
thereby overcome QMC drawbacks

Multilevel rQMC (MLQMC) (Giles & Waterhouse, 2009): Instead
of estimating E[∆`] by standard MC, use rQMC

Further increase of convergence rate
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Predator-prey model (method comparison)

Figure : Left plots of cost in FLOPs versus MSE for MLMC, QMC, unbiased
multilevel method and right MLQMC comparing to standard Monte Carlo.
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Predator-prey model (method comparison)

Figure : Histograms for MLMC, QMC, MLQMC and unbiased multilevel
estimation, each based on 5000 estimates for E[u1(T )] with a fixed RMSE of
ε = 0.1. The gold standard value is given by the red line.
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Application to earth science problems

Same methods in principle applicable in the context of any differential
equation setup (general formalism)

Reduction in complexity order / computational cost of standard MC

Large-scale UQ problems in earth science become tractable that
otherwise would not be due to tremendous computational cost

Example: Reliable prediction for energy production of tidal turbines
in the presence of uncertainties in the flow model

Domain of size of hundreds of kilometres diameter
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Application to tidal turbine array assessment
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Application to tidal turbine array assessment (continued)

Forward model F given by shallow water equations (SWE)

Discretised forward model Fh finite element SWE solver

Random input α given by random initial & boundary conditions,
bottom friction field, water depth at rest, source terms ...

Turbines represented by locally increased bottom friction field (bump
function)

(Opentidalfarm.org)
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Proof of concept: MLMC for SWE

Figure : Left plots of an ensemble of realisations of free surface solutions for
SWE on high resolution. Right MSE versus cost in CPU time in s for MLMC

(plots by Alistair Gregory, PyClaw 2D shallow water)
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Future work

Represent all relevant sources of uncertainty by random fields

Apply MLMC for general energy estimates

Incorporate unbiased and QMC approaches

Use adaptively refined meshes

Use multi-fidelity approaches
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