Inverse Lax-Wendroff Procedure for Numerical
Boundary Conditions of Hyperbolic Equations

Chi-Wang Shu

Division of Applied Mathematics

Brown University

Joint work with Sirui Tan and Francois Vilar, Ling Huang and Mengping
Zhang




INVERSE LAX-WENDROFF PROCEDURE FOR NUMERICAL BOUNDARY CONDITIONS OF HYPERBOLIC EQUATIONS

| Outlinel

e Introduction
e Time dependent conservation laws
e Compressible inviscid flows involving complex moving geometries

e Conclusions and future work

Dmvision of Apphed Mathematics, Brown University




INVERSE LAX-WENDROFF PROCEDURE FOR NUMERICAL BOUNDARY CONDITICNS OF HYPERBOLIC EQUATIONS

| Introduction '

For finte difference schemes approximating PDEs. there are two major
difficulties associated with numerical boundary conditions:

e High order finite difference schemes involve a wide stencil, hence
there are several points near the boundary (either as ghost points
outside the computational domain or as the first few points inside the
computational domain near the boundary) which need different
treatment.
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For example, if we have the following scheme

n+l _ n , n - A
uy; " = au]_g burl + cu +duﬁi

with surtably chosen constants a, b, ¢ and d (which depend on
A= %}. approximating the PDE

Uy + Uy =)

u(r.0) = f(r). u(0.t) = g(t)

to third order accuracy, then either a ghost point u”™ ; is needed, or the

scheme cannot be used to compute u’f*l
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¢ The boundary of the computational domain may not coincide with gnd
points.

For exampie. n 1D. we may have the physical boundary r = 0
located anywhere between two gnd ponts. While this seems artificial,
it 1s unavoidable for a moving boundary computed on a fixed gnd.

This difficulty is more profound in 2D (complicated geometry
computed on Cartesian meshes).

One of the major difficulties i1s the small cell near the boundary and the
resulting small ime step required for stability.
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Previous work on numerical boundary conditions:

e h-box method of Berger. Helzel and LeVeque (SINUM 2003): suitable
flux computation based on cells of size h. This method can overcome
the difficulty of small ime step for stability, but is somewhat
complicated in 2D and for high order accuracy.

e Reflecting or symmetry boundary conditions for ghost points: suitable
for solid walls or symmetry lines which are straight lines but lead to
large errors for curved walls not aligned with meshes.
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e Extrapolation to obtain ghost point values (Kreiss et al SINUM 2002,
2004, SISC 2006, Sjogreen and Petersson CiCP 2007). A GKS
stability analysis must be performed to assess its stability. Second
order 1s fine but higher order 1s more complicated to analyze. It 1s not
stable if the physical boundary is too close to a gnd point.

e Converting spatial denvative near the boundary to temporal
denvatives (Goldberg and Tadmor, Math Comp 1978, 1981 for
one-dimensional linear hyperbolic inhal-boundary value problems).
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Review on the traditional Lax-Wendroff procedure for solving, e.g.
w +u, =0

e Taylor expansion in time

1 .
u_’:*l = u; + (ue); At + 3{1:”]1312 - ...

e Replace the time dernvatives by spatial derivatives by repeatedly using
the PDE:

( Uy )J — “{u:);

(8e); = —((uz)e); = —((up):); = (uz2);

e Approximate the spatial derivatives by finite differences of suitable

order of accuracy.
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We now look at the basic idea of the inverse Lax-Wendroff procedure, by
switching the roles of r and ¢ in the traditional Lax-Wendroff procedure.
Suppose we are solving

g + u, = 0. u(0.t) = g(t)

and suppose the boundary r = () is of distance aAr from x; (with a
constant a). the inverse Lax-Wendroff procedure to determine u; Is as

follows:
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e Taylor expansion in space

1 :
uy = u(0.t) + ug(0.t)aAr + ;u,_.,(n.f)(.«.mxﬁ e

¢ Replace the spatial denivatives by ime derivatives by repeatedly using
the PDE:

Uy = —Uy: u(0.t) = —uy(0.1) = —4/'(t)

Urr — (_Uf): — _"u.r)t‘ — Uy,

uy.(0.2) = uu(0.t) = g"(t)

e Compute g'(t), g"(t). etc. either analytically or by finite difference.
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| Steady state Hamilton-Jacobi equations '

We are interested in the steady state solution of the Hamilton-Jacob

equation

H(or.04) = flr.y) (1)
together with suitable boundary conditions.

We can use Runge-Kutta or other methods to march in time for the time
dependent PDE
o + H(o:.0,) = f(r.y) (2)

untll steady state I1s reached, but that I1s rather slow.
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One class of effective numerical methods is the fast sweeping method
(Boue and Dupuis, SINUM 1999; Zhao, Math Comp 2005). For high order
finite difference fast sweeping methods (Zhang, Zhao and Qian, JSC
2006), the first few points near an inflow boundary are usually prescribed
to be the exact solution. This is not practical for problems with unknown

exact solutions.

We can design a procedure similar to the Lax-Wendroff procedure to fix
the first few points near the boundary purely by the given boundary
conditions and the PDE.
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| Time dependent conservation laws I

The same idea we mentioned in the introduction can be used to strongly
hyperbolic conservation laws for U = U(zr.y.t) = R*

Ui+ F(U),+G(U), =0 (r.y) Q. t>0. -
(3)

.

[

Ulr.y.0) =Upylzr.y) (r.y)

on a bounded domain {! with appropnate boundary conditions prescrnbed
on A2 attime t We assume ! is covered by a uniform Cartesian mesh

) = {{xr;.y;) : 0 <1 € N;.0 < j < N, | withmesh size
Ar=2A7Ay
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One difficulty of this procedure, especially for nonlinear systems in
multiple-dimensions, i1s that the algebra becomes very heavy for higher
order derivatives.

In (Tan, Wang, Shu and Ning, JCP 2012), a simplified version of this
inverse Lax-Wendroff procedure is adopted. This procedure is used only
to compute the first spatial dernvative u .. subsequent derivatives ... etc.
are obtained by standard extrapolation with suitable order of accuracy.

The computational examples in (Tan. Wang. Shu and Ning. JCP 2012) are
for physical boundaries aligned with the mesh points. For such cases and
for fifth order WENO schemes. this simplified inverse Lax-Wendroff
procedure works very well with stable results in very demanding

detonation problems.
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In (Vilar and Shu, M? AN 2015), we perform a rigorous stability analysis
using the GKS (Gustafsson, Kreiss and Sundstrom) theory, using the
class of central compact schemes in (Liu, Zhang, Zhang and Shu, JCP
2013) as examples.

This analysis gives explicit guidance on how many terms of u,., u,,., ...
are required to be treated by the inverse Lax-Wendroff procedure in order
to maintain stability (for the fully discrete case. under the same CFL
number as in the periodic case) for arbitrary location of the boundary in
relation to the nearest gnd point.
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Scheme || Required leading terms
CCS-T4 3

CCS-Té 3

CCS-T8 5
CCS-T10 8
CCS-T12 9

Table 1 Minimum number of leading terms required by the different RK3-
CCS-tndiagonal schemes to remain stable under the same CFL as that for
periodic boundary conditions.
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Al the outflow boundary, extrapolation of appropnate order 1s used Either
a regular or a WENO lype extrapolation 1s appropnate depending on
whether the outflow solution s smooth or contains shocks

For the outflow boundary condition. we can show that the scheme with the
extrapolation is stable for all order =

We ré’?iark that the time step restriction of solving the system of ODEs
with our boundary treatmenl s not more severe than the pure intial value
problem. The standard CFL conditions determined by the intenor schemes

are used in the numerncal examples
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Example 1 We test the Burgers equation

ue + (3u°)_ =0 re(—1,1), t>0,
u(r.0) = 0.25 + 0.5sin(7r) r < [-1.1], (4)
u(—1.1) = glt) t >0

Here g(t) = w(—1.t) where w(.r.t)is the exact solution of the initial
value problem on ( —1. 1) with periodic boundary conditions. For all . the
left boundary r = — 1 i1s an inflow boundary and the right boundary

r = 1 is an outfiow boundary.
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Table 2 Emors of the Burgers equation (4). Ar =2/Nand t = 0.3.

N L' error | order | L error | order

40 | 9.11E-05 3.56E-04

80 | 3.10E-06 | 488 | 1.35E-05 | 4.72

160 | 1.31E-07 | 457 | 651E-07 | 438

320 | 397E-09 | 505 | 268E-08 | 4.60

640 | 1.02E-10 | 529 | 8.34E-10 | 5.00

1280 | 2.86E-12 | 5.15 | 2.62E-11 | 5.00
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Figure 1: Burgers equation (4), Ar = 1/40.  Solid line: exact solution;

Symbols: numerical solution.
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: =)
(@) computational domain (b) gensity contour

Figure 2. Left: The computational domain (solid line). The dashed line
indicates the computational domain used in the traditional finite difference
solvers. The square points indicate some of the grid points. Right: Density

1

contour of double Mach reflection. Ar = Ay = 5.
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Figure 3. Density contours of double Mach reflection, 30 contours from
1.731 10 20.92. Zoomed-in near the double Mach stem. The plots in the left
column (our computation with the new boundary condition treatment) are

rotated and translated for comparison.

Divisson of Apphed Mathematics, Brown University




INVERSE LAX-WENDROFF PROCEDURE FOR NUMERICAL BOUNDARY CONDITIONS OF HYPERBOLIC EQUATIONS

24 0.k
03 03 |
> ' > |
o2 . a2 l
ot ' 21 \
- ] B % rot " k -1 o 2 26 1
X i a‘i - <8

(@) Axr = Ay =

: original problem (b) Ax = Ay = ._:jj. equivalent problem

640"

Figure 4. Continued
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Example 3. This example involves a curved wall which is a circular
cylinder of unit radius positioned at the origin on a r-y plane. The problem
IS initialized by a Mach 3 flow moving toward the cylinder from the left. In
order to impose the solid wall boundary condition at the surface of the
cylinder by the reflection technique, a particular mapping from the unit
square to the physical domain is usually used in traditional finite difference
methods. Using our method, we are able to solve this problem directly in

the physical domain.
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Figure 5 Physical domain of flow past a cylinder. The square points in-
dicate some of the gnd points near the cylinder. lllustrative sketch, not to

scale.
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Figure 6. Pressure contour of flow past a cylinder.
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Compressible inviscid flows involving complex moving geometries

We extend the high order accurate numerical boundary condition based
on finite difference methods to simulations of compressible inviscid flows

involving complex moving geometries.

e For problems in such geometnes, it i1s difficult to use body-fitted

meshes which conform to the moving geometry.

¢ Instead, methods based on fixed Cartesian meshes have been
successfully developed. For example, the immersed boundary (1B)
method introduced by Peskin (JCP 1972) i1s widely used. One of the
challenges of the IB method is the representation of the moving
objects which cut through the arid lines in an arbitrary fashion.
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e To solve compressible inviscid flows in complex moving geometries,
most methods in the literature are based on finite volume schemes.
Most of these finite volume schemes in the literature are at most
second order. In particular, the errors at the boundanes sometimes
often fall short of second order.

e Our inverse Lax-Wendroff procedure can be extended to such
situations with moving geometries. The only change is to obtain
relationships between the temporal and spatial denvatives via the PDE
in moving Lagrangian framework.
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Example 4. This i1s a 1D problem involving shocks and rarefaction waves.
A piston with width 104 is initially centered at + = —5h inside a shock
tube. Here h is the mesh size. The piston instantaneously moves with a
constant velocity U, = 2 into an initially quiescent fluid with p=1and
p = 5/7. This problem is equivalent to two independent Riemann
problems and thus the exact solution can be obtained. A shock forms
ahead of the piston and a rarefaction wave forms in the rear.
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Figure 7 Density and pressure profiles of Example 10. The piston i1s rep-
resented by the rectangle. Solid lines: exact solutions, Symbols. numerical

solutions with i = 0.25.
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Example § We now move on to 2D examples. A gas is confined in a
rectangular region whose boundanes are ngid walls. The top and bottom
walls are fixed at y = () and y = 1 respectively The right wall is fixed at
r = 1. The left moving wall is positioned at r;(t) = 0.5(1 — sint). The
iniial conditions are

plr.y.0) = 1+02cos[27 (xr— 0.5)] +0.1cos [2m(y — 0.5)].
u(r.4.0) = x—1.

v(r.y.0) = yll — y)cos(wr).

plr.y.0) = plr.y.0).

such that the initial entropy s(.r.y.U) = 1. We use our high order
boundary treatment at the left moving wall and the reflection technique at
the fixed walls
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Table 3. Entropy errors and convergence rates of Example 5.

h

L' error

order L error order

1/80
1160
1/320
1/640

2 50E-08
1.10E-09
9.70E-11
9.87E-12

4 50

3.50
3.30

3.28E-07

3.06E-08 342
6.17E-09 231
7.06E-10 3.13
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Table 4 Center of the cylinder of Example 13.

| h t = 0.1641 t = 0.30085
Ir-coordinate y-coordinate || r-coordinate y-coordinate
1160 3.7058E-01 8.1140E-02 6.7178E-01 1. 3759E-01
1/320 36153E-01 83219E-02 || 6.4959E-01 | 4444E-01
1/640 3.5706E-01 83680E-02 || 6.3895E-0O1 1.4517E-01
1/1280 3.5539E-01 8 4133E-02 6 .3550E-01 | 4607E-01
12560 || 3.5461E-01 84258E-02 || 6.3362E-01 | 4638E-01
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Figure 8. Pressure contours at t = 0.1641. 53 contours from 2 to 28.

t = 0.1641.
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[ Concluding remarks I

¢ We have demonstrated an inverse Lax-Wendroff procedure for
boundary treatment, which yields stable discretization with the same
CFL number as the mner scheme and allows us to compute problems

on arbitrary domains using Cartesian meshes.

e The technique can be apphed to inviscid flows with complex moving

geometnes, yielding stable and high order accurate solutions.

e Future work would involve a generalization of this technique to other
schemes such as the discontinuous Galerkin method, and to viscous
problems and to probiems with deformable structures.
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