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From membrane shape to membrane mechanics
• Large body of experimental data on membrane geometry 

• Spontaneous curvature 
• Membrane heterogeneity

• Continuous quantity
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Proposed methodology
• Classical continuum approach to membrane biomechanics at equilibrium


• Inverse approach: use geometry as an input, and compute BC, load and/
or distribution of spontaneous curvature
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Modeling approach
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Helicoidal ramps

Chabanon & Rangamani, in preparation

Catenoid-like necks

Chabanon & Rangamani, Soft Matter (2018)

Assumptions on the geometry

Augmented Helfrich energy to 
account for protein density 𝜎:

and

�(g,a +WKK,a +WHH,a)aba =

✓
∂W
∂q a |exp +l,a

◆
aba = 0 , (S1.12)

where D(·) = (·);ab aab is the surface Laplacian (or Beltrami operator), and ∂ (·)/∂q a |exp is the explicit derivative
with respect to q a .

Eqs. S1.11 and S1.12 are the general shape equation and incompressibility condition for an elastic surface
with free energy per unit area W (r,H,K;q a). In the following we specialize it to the case of lipid membranes by
specifying the form of the free energy.

1.2 Elastic lipid bilayers with non-constant spontaneous curvature
The most common model of lipid membranes is the Helfrich energy8. This can be extended to account for the
entropic contribution of membrane-bound proteins to the areal free-energy functional such as

W (s ,H,K;q a) = A(s)+ k(q a)[H �C(s)]2 + kG(q a)K , (S1.13)

Here A(s) is the contribution of the membrane-bound proteins to the free energy and s is the surface density of
proteins. k(q a) and kG(q a) are the bending and Gaussian moduli respectively, considered to be surface coordinate
dependent. C(s) is the spontaneous (mean) curvature, which is determined by the local membrane composition, say
the surface density of a curvature-inducing protein s . We will propose later a possible relationship for C(s). While
it is certainly possible to propose explicit functions of A(s) and C(s) on the protein density (see9 for discussion on
A(s), and10, 11 for specific examples) we will for now retain their general form.

The shape equation for lipid membrane with protein and space dependent moduli is obtained by introducing the
free energy density (S1.13) into Eq. (S1.11), resulting in

D [k(H �C)]+2HDkG�(kG);ab bab +2k(H�C)(2H2�K)+2H(kGK�W (s ,H,K;q a)) = p+2lH . (S1.14)

The incompressibility for lipid membranes is obtained similarly, introducing (S1.13) into the Eq. (S1.12)

—l =�Ws —s �—k(H �C)2 �—kGK , (S1.15)

where (·)s = ∂ (·)/∂s is the partial derivative with respect to s , and —(·) = (·),aaab is the surface gradient. One
can recognize Ws as the chemical potential of the membrane protein, and given Eq. (S1.13), we have

Ws = As �2k(H �C)Cs . (S1.16)

Eqs. S1.14 and S1.15 describe the equilibrium configuration of lipid membrane subject to heterogeneous
spontaneous curvature induced by proteins. An additional constraint related to the area incompressibility of the
membrane requires the lipid velocity field (u = uaaa +wn) to satisfy10

ua
;a = 2Hw . (S1.17)

Although models for lipid flow within biological membranes have been proposed2, 3, 9, 12, such description is out
of the scope of this study. Provided a lipid velocity field satisfying Eq. S1.17, and suitable boundary conditions,
the system given by the coupled equations S1.14 and S1.15 fully describes the equilibrium configuration of a lipid
membrane subject to a static distribution of curvature-inducing proteins.

1.3 Static distribution of curvature-inducing protein on minimal surfaces
In this section, we specialize the system of Eqs. S1.14 and S1.15 to minimal surfaces, and examine the associated
restrictions on the Lagrange multiplier field l and velocity field ua .

Before to proceed, it is useful to clarify what are the imposed and the unknown quantities in our model.
Traditionally, one seeks to compute the shape of the membrane for a given distribution of spontaneous curvature
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protein contribution to 
membrane energy 

spontaneous curvature 
induced by proteins

For minimal surfaces (H=0) with homogeneous mechanical properties

Imposing the geometry, we solve for the distribution of spontaneous curvature (C), 
and compute the total bending energy

and boundary conditions. This is often done by formulating the shape equation and incompressibility condition
within a certain parametrization. For instance, within the Monge parametrization one would aim to compute the
height of the membrane h(x,y) with respect to a reference plane at every point, while in axisymetric coordinates one
would solve for the distance to the axis of symmetry r(z). In our case however, we consider the inverse problem,
that is to say, we seek to compute the distribution of spontaneous curvature for a given shape of the membrane and
boundary conditions. Independently of the approach, the spontaneous curvature C(s) is interpreted physically as
resulting form the distribution of curvature-inducing proteins (or lipids) of areal density s on the membrane. We
illustrate our ‘inverse problem’ approach by choosing minimal surfaces as the imposed membrane shape. We further
demonstrate the applicability of our model by solving on catenoid-like necks, which are minimal surfaces that have
been extensively used as models for the study of fusion/fission intermediate.

Minimal surfaces are characterized by the property that the mean curvature vanishes pointwise (H = 0 everywhere
on the membrane). Furthermore, as a first approximation, we consider membranes with isotropic mechanical
properties (k and kG are constants). Accordingly, in the absence of transmembrane pressure, the shape equation
S1.14 reduces to a variable-coefficient Helmhotz equation for the spontaneous curvature

DC(s)�2KC(s) = 0 . (S1.18)

Both the energetic contribution of the proteins A(s) and the local Lagrange multiplier l are now absent from
the shape equation S1.18, therefore uncoupling them from the incompressibility condition. Yet, any solution of
Eq. S1.18 is restricted to the condition that the balance equation S1.15 with S1.16 is satisfied. For minimal surfaces,
these later equations reduce to

—l =� [A(s)s +2kC(s)C(s)s ]—s . (S1.19)

Using the identities —A(s) = A(s)s —s and —
⇥
C(s)2⇤= 2C(s)C(s)s —s , this can be simplified to

—l =�—[A(s)+ kC(s)2] , (S1.20)

from which we get l as a function of A(s) and C(s) apart from a constant l0, such that

l =�[A(s)+ kC(s)2]+l0 . (S1.21)

Equation S1.21 is the admissibility condition for the Lagrange multiplier field l .

1.4 Relationship between protein density and spontaneous curvature
Here we propose an explicit relationship between the spontaneous curvature and the distribution of curvature-inducing
proteins.

One protein model. Let us consider a pointwise protein surface density on the membrane s(q a). The goal of
this section is to propose an expression for C(s). Note that we consider proteins only for ease of visualization, but
our model can be as easily applied to spontaneous curvature-inducing lipids or nano-objects instead of proteins.

A convenient way to think about the relationship between spontaneous curvature and protein density, is in terms
of the insertion of a conical shape transmembrane protein with its axis of revolution directed along the surface
normal (see Fig. S1). Following this representation, the point value of C(s) will depend on (i) the angle of the cone
(j), (ii) the lipid-protein specific moietic interactions (k), and (iii) the local density of protein (s ). It should be
noted that in this model, we neglect any thickness variation or lipid tilt resulting from the insertion of the proteins
in the lipid bilayer. Although experimental observations seem to support point (iii)13, 14, to our knowledge, no
explicit relation between C and s has been reported based on experimental data. Consequently, we consider a simple
expression for the spontaneous curvature of the form10

C(s) = kjs . (S1.22)
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Necks as catenoids
5

Avinoam, et al., Science (2015)
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Fig. S2 hCLTAEN/TF and hCLTAEN/hDNM2EN show no apparent morphological 
differences 
hCLTAEN/hDNM2EN (green) and hCLTAEN/TF (pink) are shown as in Figure 3. The 
distributions of the plotted parameters are the same for both datasets. (A) Invagination 
depth versus θ. (B) Tip curvature versus θ. Bars represent the standard deviation from the 
circle fitted to the upper half of the invagination (Table S1)(13). (C) Coat surface area 
versus θ. The surface area of the coat calculated at a radius in the middle of the coat. A 
line (red) fitted by linear regression using GraphPad Prism (version 6.00; GraphPad 
Software, La Jolla California USA) shows that surface area remains constant during 
invagination. Gray lines represent the 95% confidence band of the best-fit line. (D) 
Coated membrane surface area versus θ. Bars represent deviations in surface area due to 
inaccuracies in identifying the coat edges (13). Although the coat surface area does not 
change during invagination, because the clathrin coat is a thick structure, geometric 
considerations mean that the underlying membrane surface (which is at a lower radius) 
shrinks slightly as the coat becomes increasingly curved. (E) Representative profiles of 
different stages of invagination; coat (red), PM (black), fitted circles (dashed line) as in 
Figure 3E. 
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Application to catenoids
• Catenoid geometry


• Solve for the spontaneous curvature with identical boundary conditions

6

that necks are connecting larger membrane reservoirs on each sides, which serve as sources for curvature-inducing
proteins (see Fig. 2(a)). Since the distribution of C on a minimal surface should satisfy the admissibility conditions
for l (Eqs. 7), imposing Dirichlet boundary conditions for C results in imposing the membrane tension l at the
boundary satisfying Eq. 7. In fact, this condition provides a correspondence between spontaneous curvature and
membrane tension everywhere on the surface.

It is important to note that the boundary conditions here should not be confused with boundary conditions
between the protein inclusion and the monolayers, which have been studied in detail elsewhere49–51. In contrast to
these studies, here we consider the spontaneous curvature of the whole bilayer, including the one induced by the
protein inclusion. In this approach, we neglect any membrane thickness variation (see model assumption 1), and do
not account for the specific location of the protein inclusion. The only boundaries we consider are the ones at the
boundaries between the membrane minimal surface and the membrane reservoirs.

Model Implementation

Catenoids We consider a catenoid of height h0 and neck radius rn such as the one depicted in Fig. 2(b). In
axisymmetric coordinates, this surface can be parametrized by

r = rn cosh(z/rn) with z 2 [�h0/2;h0/2] . (8)

We seek the distribution of spontaneous curvature along the arclength s = rn sinh(z/rn) in the axial direction. We
choose the total arclength L = 2rn sinh[h0/(2rn)], as the characteristic length of the catenoid.

The shape equation (Eq. 4) involves two geometrical invariants of the surface: the mean and the Gaussian
curvature. The mean curvature is zero everywhere on a catenoid; however the Gaussian curvature of a catenoid
depends on z and the neck radius as

K =�


1
rn cosh2(z/rn)

�2

=�


1
rn(1+(s/rn)2)

�2

. (9)

The Gaussian curvature of the catenoid is negative everywhere and is minimum (i.e. maximum magnitude) when
z = 0 or s = 0 (Figs. 2(c) and 3(b)). As the neck radius decreases, the Gaussian curvature at the neck decreases
towards minus infinity, while it tends to zero away from the neck.

Boundary conditions As noted above, we specify the spontaneous curvature at the boundaries with the following
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Influence of neck radius
• Fixed total arc length L and identical boundary 

conditions C0

• Vary neck radius rn  

7
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Simple oscillator analogy
8

BC: C(0) = C(L) = C0

˙C(0) = C0! tan(!L/2) ; C(L/2) =
C0

cos(!L/2)

d2C

ds2
= �!2Cr2C � 2KC = 0 )

C(s) =
C0

cos(!L/2)
cos(!s� !L/2)

If K is constant
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Influence of neck radius
• Existence of energy barrier to constrain the neck

9
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that necks are connecting larger membrane reservoirs on each sides, which serve as sources for curvature-inducing
proteins (see Fig. 2(a)). Since the distribution of C on a minimal surface should satisfy the admissibility conditions
for l (Eqs. 7), imposing Dirichlet boundary conditions for C results in imposing the membrane tension l at the
boundary satisfying Eq. 7. In fact, this condition provides a correspondence between spontaneous curvature and
membrane tension everywhere on the surface.

It is important to note that the boundary conditions here should not be confused with boundary conditions
between the protein inclusion and the monolayers, which have been studied in detail elsewhere49–51. In contrast to
these studies, here we consider the spontaneous curvature of the whole bilayer, including the one induced by the
protein inclusion. In this approach, we neglect any membrane thickness variation (see model assumption 1), and do
not account for the specific location of the protein inclusion. The only boundaries we consider are the ones at the
boundaries between the membrane minimal surface and the membrane reservoirs.

Model Implementation

Catenoids We consider a catenoid of height h0 and neck radius rn such as the one depicted in Fig. 2(b). In
axisymmetric coordinates, this surface can be parametrized by

r = rn cosh(z/rn) with z 2 [�h0/2;h0/2] . (8)

We seek the distribution of spontaneous curvature along the arclength s = rn sinh(z/rn) in the axial direction. We
choose the total arclength L = 2rn sinh[h0/(2rn)], as the characteristic length of the catenoid.

The shape equation (Eq. 4) involves two geometrical invariants of the surface: the mean and the Gaussian
curvature. The mean curvature is zero everywhere on a catenoid; however the Gaussian curvature of a catenoid
depends on z and the neck radius as
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The Gaussian curvature of the catenoid is negative everywhere and is minimum (i.e. maximum magnitude) when
z = 0 or s = 0 (Figs. 2(c) and 3(b)). As the neck radius decreases, the Gaussian curvature at the neck decreases
towards minus infinity, while it tends to zero away from the neck.

Boundary conditions As noted above, we specify the spontaneous curvature at the boundaries with the following
Dirichlet boundary conditions:

C =

⇢
C0 at the lower boundary
C1 at the upper boundary , (10)

where C0 and C1 are prescribed.

Implementation We write the dimensionless forms of Eqs. 6 and 10 using the total arclength of the symmetric
catenoid L, and the reference value of spontaneous curvature at one of the boundaries C0, respectively. Accordingly,
the geometric variables are scaled as q̄ a = q a/L, and K̄ = KL2, while the spontaneous curvature is scaled as
C̄ =C/C0. Accordingly, the system can be written in its dimensionless form as

DC̄�2K̄C̄ = 0, (11)

with the dimensionless boundary condition

C̄ =

⇢
1 at the lower boundary
C1/C0 at the upper boundary . (12)

The bending energy of the membrane is defined by the integral of the contribution from the curvature to the
energy density over the catenoid surface (W), that is

WB =
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kC2 + kGK
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dw . (13)

6/20

How to overcome the energy barrier to close a catenoid-like neck?

Need at least two distinct mechanisms to constrain a catenoid-like neck

arc length:
s∈[-L/2 ; L/2]
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C0
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Modulation of the energy barrier
10
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• Influence of the geometrical asymmetry

• Influence of the boundary conditions
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Helicoids
11

Helicoidal ramps

Chabanon & Rangamani, in preparation

Catenoid-like necks

Chabanon & Rangamani, Soft Matter (2018)

But … helicoids in the 
Endoplasmic Reticulum are 
more like parking ramps, with 

one arm and hollow
s

z

r

C0

C1

z
s

C1C0

All results from catenoids hold for full helicoids

C/C0

• Continuous and isometric transformation between catenoid and helicoid
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Helicoidal ramps
• Switch in spontaneous curvature with inner radius

12
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Helicoidal ramps with spatial variations of BC
• Linear gradient at external boundary


• Double energy barrier present a local minimum possibly involved in 
regulating ER ramps geometries
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• Methodology to compute the 
spontaneous curvature required to 
maintaining a given membrane 
structure

15

Summary

Inputs:  
Geometry, BC

Output: 
Spontaneous curvature, 

stress, energy …

Exp. data

Inverse approach

Shape eq. and

incompressibility eq.

Parametrize 
and solve

• Helicoid as model for ER ramps 
• Energy barrier at inner ramp radius

• Double energy barrier for gradient of C

• Non-trivial distribution of C


• Possible regulation mechanisms of ER ramps

Helicoidal ramps

Chabanon & Rangamani, in preparation

Catenoid-like necks

Chabanon & Rangamani, Soft Matter (2018)

• Catenoid as model for necks

• Energy barrier at specific neck radius

• Asymmetry constrain the energy 

landscape

• Requirement of at least 2 mechanisms 

to constrain catenoid-like neck
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Local stress balance of elastic membranes
• Mechanical equilibrium of an elastic surface 𝜔, subject to a lateral 

pressures p: 


• Components of the stress vector depend on the surface energy per 
area W(H,K;𝜽𝜶)

• Normal and tangential stress balance
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Here the tangential stress vectors are

Ta = T baab with T ba = sba +bb
µMµa , (S1.3)

and the components of the normal stress vectors are

Sa =�Mab
;b , (S1.4)

where bb
a = abl bla . The components of the stress vectors depends on the energy density as1
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where r the surface mass density of the membrane. The tangential and normal local force balances can now be
obtained by introducing Eqs. S1.2, S1.3, and S1.4 into Eq. S1.1, resulting in

T ba
;a �Sabb

a = 0 and Sa
;a +T babba + p = 0 , (S1.6)

where we made use of the Gauss and Weingarten equations7 aa;b = bab n and n,a =�bb
aab respectively.

Practically, the free energy density is sometimes given as a function of the mean curvature H and Gaussian
curvature K. These are related to the metric and curvature by

H =
1
2

aab bab , K =
1
2

eab el µbal bb µ , (S1.7)

where aab = (aab )
�1 is the dual metric, and eab is the permutation tensor defined by e12 = �e21 = 1/

p
a,

e11 = e22 = 0. According to the definitions S1.7, the free energy density per unit mass can be re-written in terms of
the mean and Gaussian curvature F(H,K;q a). Furthermore, lipid membranes are essentially incompressible (see
assumption 3 above). This leads us to introduce a Lagrange multiplier g(q a) to ensure that the local area dilatation
J = 1, or equivalently, to constraint the constant surface density r of the membrane. Consequently we can define the
surface energy density of the membrane as follows

F(r,H,K;q a) = F̄(H,K;q a)� g(q a)

r
, (S1.8)

and when introducing the surface energy per unit area W (r,H,K;q a) = rF̄(H,K;q a), the components of the stress
vectors (Eqs. S1.5) can be written as1

sab = (l +W )aab � (2HWH +2KWK)aab +WHb̃ab (S1.9)

Mab =
1
2

WHaab +WKb̃ab (S1.10)

where l (q a) =� [g(q a)+W (H,K;q a)], and b̃ab
;b = 2Haab �bab is the cofactor of the curvature. The subscripts

H and K refer to the partial derivative of the energy with respect to the indicated variable. The Lagrange multiplier
g has a mechanical interpretation of surface pressure and is not a material property of the surface2, 3. l can be
interpreted as the surface tension based on comparisons with edge conditions on a flat surface3.

Finally, introducing Eqs. S1.9 and S1.10 into Eqs. S1.3 and S1.4, we can rewrite the normal and tangential force
balances (Eqs. S1.6) as

D
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WH

◆
+(WK);ab b̃ab +WH(2H2 �K)+2H(KWK �W ) = p+2lH , (S1.11)
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and

�(g,a +WKK,a +WHH,a)aba =

✓
∂W
∂q a |exp +l,a

◆
aba = 0 , (S1.12)

where D(·) = (·);ab aab is the surface Laplacian (or Beltrami operator), and ∂ (·)/∂q a |exp is the explicit derivative
with respect to q a .

Eqs. S1.11 and S1.12 are the general shape equation and incompressibility condition for an elastic surface
with free energy per unit area W (r,H,K;q a). In the following we specialize it to the case of lipid membranes by
specifying the form of the free energy.

1.2 Elastic lipid bilayers with non-constant spontaneous curvature
The most common model of lipid membranes is the Helfrich energy8. This can be extended to account for the
entropic contribution of membrane-bound proteins to the areal free-energy functional such as

W (s ,H,K;q a) = A(s)+ k(q a)[H �C(s)]2 + kG(q a)K , (S1.13)

Here A(s) is the contribution of the membrane-bound proteins to the free energy and s is the surface density of
proteins. k(q a) and kG(q a) are the bending and Gaussian moduli respectively, considered to be surface coordinate
dependent. C(s) is the spontaneous (mean) curvature, which is determined by the local membrane composition, say
the surface density of a curvature-inducing protein s . We will propose later a possible relationship for C(s). While
it is certainly possible to propose explicit functions of A(s) and C(s) on the protein density (see9 for discussion on
A(s), and10, 11 for specific examples) we will for now retain their general form.

The shape equation for lipid membrane with protein and space dependent moduli is obtained by introducing the
free energy density (S1.13) into Eq. (S1.11), resulting in

D [k(H �C)]+2HDkG�(kG);ab bab +2k(H�C)(2H2�K)+2H(kGK�W (s ,H,K;q a)) = p+2lH . (S1.14)

The incompressibility for lipid membranes is obtained similarly, introducing (S1.13) into the Eq. (S1.12)

—l =�Ws —s �—k(H �C)2 �—kGK , (S1.15)

where (·)s = ∂ (·)/∂s is the partial derivative with respect to s , and —(·) = (·),aaab is the surface gradient. One
can recognize Ws as the chemical potential of the membrane protein, and given Eq. (S1.13), we have

Ws = As �2k(H �C)Cs . (S1.16)

Eqs. S1.14 and S1.15 describe the equilibrium configuration of lipid membrane subject to heterogeneous
spontaneous curvature induced by proteins. An additional constraint related to the area incompressibility of the
membrane requires the lipid velocity field (u = uaaa +wn) to satisfy10

ua
;a = 2Hw . (S1.17)

Although models for lipid flow within biological membranes have been proposed2, 3, 9, 12, such description is out
of the scope of this study. Provided a lipid velocity field satisfying Eq. S1.17, and suitable boundary conditions,
the system given by the coupled equations S1.14 and S1.15 fully describes the equilibrium configuration of a lipid
membrane subject to a static distribution of curvature-inducing proteins.

1.3 Static distribution of curvature-inducing protein on minimal surfaces
In this section, we specialize the system of Eqs. S1.14 and S1.15 to minimal surfaces, and examine the associated
restrictions on the Lagrange multiplier field l and velocity field ua .

Before to proceed, it is useful to clarify what are the imposed and the unknown quantities in our model.
Traditionally, one seeks to compute the shape of the membrane for a given distribution of spontaneous curvature
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with the stress vector defined as

tangential components normal components
T↵ = T↵�a�
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