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In a Nutshell

We build an algorithm for computing topological entropy that:

1. requires only an ensemble of trajectories

2. requires no knowledge of governing equations

3. scales favorably in runtime compared to other 2D ensemble-based 
approaches

4. can be generalized to higher dimensions



Topological Entropy in Rod-Stirring System

Source: Boyland, P. L., Aref, H. & Stremler, M. A.  (2000).

Bad mixing protocol
Rod stirring process 
gives low topological 
entropy

One Period

Topological entropy given by exponential growth rate of an advected
material line

Four periods



Topological Entropy in Rod-Stirring System

Topological entropy given by exponential growth rate of an advected
material line

Good mixing protocol
Rod stirring process 
gives high topological 
entropy

One Period

Four periods

Source: Boyland, P. L., Aref, H. & Stremler, M. A.  (2000).



Motivation for Studying Topological 
Entropy



Everyday Mixing

We typically think of turbulence when discussing fluid mixing

http://www.albaniles.org

• Characterized by formation of eddies and 
vortices in high Reynold’s number regimes

• Scalar (cream) is mixed in fluid (coffee) quickly 

Source: https://www.flickr.com/photos/kidmissile/4427545035/



• Low Reynold’s number results from viscous flows 
or small length scales (bottom right)

• Scalar (oil) mixing in fluid (peanut butter) 
requires more work

Turbulence doesn’t occur when Reynold’s number is low

Source: http://www.homemadeeats.com

Everyday Mixing

Courtesy of Dogic Lab, UC Santa Barbara



Mixing from Chaotic Advection

Chaotic advection arises from from 
repeated stretching and folding of 
fluid. 

• Produces an effective stirrer/mixer in 
laminar flows

• Commonly exploited in industry settings 
(paint mixing, food processing)

• We use chaotic advection to study mixing 
of a bio material on cellular scale Video Credit: ah clem, “Depoe Bay, Oregon-salt water 

taffy pulling machine.”
<https://www.youtube.com/watch?v=Y7tlHDsquVM>

https://www.youtube.com/watch?v=Y7tlHDsquVM


Chaotic Advection and Topological Entropy

How well do densely-
packed bundles of 
microtubules mix?

Can we compute TE from  
only trajectory data?

In collaboration with the Hirst Lab, UC Merced Ref: Thiffeault, (2010)

Can we compute TE from only 
a sparse set of trajectories?

Chaotic advection implies positive topological 
entropy (TE) 
• TE is common proxy for quality of mixing
• What if velocity field or governing equations are unknown

Courtesy of Dogic Lab, 
UC Santa Barbara



a)
b)

c)

d)

Ref: Thiffeault, Jean-Luc. "Braids of entangled 
particle trajectories." (2010)

Topological Entropy from Trajectory Data

Famous mural painted at Berkeley by 
Thurston and Sullivan in the Fall of 1971

Photo Credit: J. Behrstock

Use trajectories as stirrers to deform and braid an “elastic loop”

Growth of loop gives topological 
entropy lower bound
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Ref: Thiffeault, Jean-Luc. "Braids of entangled 
particle trajectories." (2010)

Topological Entropy from Trajectory Data

Famous mural painted at Berkeley by 
Thurston and Sullivan in the Fall of 1971

Photo Credit: J. Behrstock

Use trajectories as stirrers to deform and braid an “elastic loop”

We are motivated by trajectory braiding work of 
Thiffeault, Budišić, Finn, and Allshouse

Finite Time Braiding Exponents (FTBE) 
Encodes trajectories as braids and uses actions of 
braids to stretch loops
• Pros

i) Works for open, aperiodic trajectories
• Cons

i) Slow for high point densities
ii) No higher dimensional generalization

See Budišić and Thiffeault. "Finite-time braiding exponents." (2015) 
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Topological Entropy from Trajectory Data

Famous mural painted at Berkeley by 
Thurston and Sullivan in the Fall of 1971

Photo Credit: J. Behrstock

Use trajectories as stirrers to deform and braid an “elastic loop”

Our contribution: Motivated by Marc Lefranc, we use a computational 
geometric approach to encode the loop and overcome the hardships below

Finite Time Braiding Exponents (FTBE) 
Encodes trajectories as braids and uses actions of 
braids to stretch loops
• Pros

i) Works for open, aperiodic trajectories
• Cons

i) Slow for high point densities
ii) No higher dimensional generalization

See Budišić and Thiffeault. "Finite-time braiding exponents." (2015) 



E-tec: Ensemble-based Topological 
Entropy Calculation



1. Choose trajectories to anchor loop

2. Triangulate initial points 
(constrained to choice of 
initial band)

3. Evolve trajectories, stretching band and 
locally updating triangulation upon each 
point-triangulation edge collision. (Hollow 
point moves for reference.)

E-tec Snapshot

E-tec: Ensemble-based Topological Entropy Calculation (Roberts, Sindi, 
Smith, Mitchell. Chaos. 29, 13124 (2019) )
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Detecting Trajectory-Band Collisions

We track two different types of triangle collapse events:
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Detecting Trajectory-Band Collisions

We track two different types of triangle collapse events:

Outer Triangle Event
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• We compute the topological 
length in the number of 
edges

• Loop complexity is hidden in 
exponentially growing 
integer weights

• Triangulation is used to 
detect point-band collision 
events
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Tracking Loop Growth



• We compute the topological 
length in the number of 
edges

• Loop complexity is hidden in 
exponentially growing 
integer weights

• Triangulation is used to 
detect point-band collision 
events

Tracking Loop Growth
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Tracking Loop Growth

• We compute the topological 
length in the number of 
edges

• Loop complexity is hidden in 
exponentially growing 
integer weights

• Triangulation is used to 
detect point-band collision 
events
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Example in 2D

Code available at: 
https://zenodo.org/record/1406200#.XH2vzlNKjdR

• Blue edges denote core 
triangulation of points

• Red edges denote core 
triangulations with nonzero loop 
‘weight’

A final band configuration



0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

y

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

y

0 5 10 15 20
time T

0

5

10

15

20

ln
(#

E
d
ge
s)

c)

b)

a)

Entropy	=	0.9167	+\- 0012
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E-tec Output

Topological entropy estimate is the growth of sum of total band edge 
weights as a function of time



Why use E-tec?
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Two major advancements:

1) Runtime scales nearly-linearly in size of ensemble
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2) Triangulations generalize to 
higher dimensions



E-tec in 3D



3D Framework
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We replace loop with an elastic sheet (red)
• Below, point 5 moves up, collapsing tetrahedron <1,2,3,5> with a point-face collision
• Local re-triangulation results in three new tetrahedra



Main Difficulty Generalizing to 3D
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Edge-edge collisions are tricky
• Point 5 moves to the right and up
• Edges 2-3 and 1-5 collide

By re-thinking how to record the 
structure of the elastic sheet, we may 

sidestep this difficulty.



Dual E-tec



Dual E-tec in 2D

Original E-tec: counts number of times the loop crosses over each 
edge
Dual E-tec: counts number of times the loop intersects each edge 

Original E-tec: Weighted edges in red with corresponding edge weights
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Dual E-tec in 2D

Original E-tec: counts number of times the loop crosses over each 
edge
Dual E-tec: counts number of times the loop intersects each edge 

Dual E-tec: Weighted edges in blue with corresponding edge weights
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Dual E-tec Advantages

Loop or sheet may be represented at any time with any triangulation
• Band and triangulation are decoupled

Original E-tec Dual E-tec 1 Dual E-tec 2         
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Next Steps



Maintaining a Delaunay Triangulation

If 3D triangulation in Delaunay, edge-edge collisions will not occur
• Let’s locally re-triangulate in a smarter way

Current local triangulation update New triangulation update



Maintaining a Delaunay Triangulation

Inspired by Hugo Ledoux, we re-triangulate at all topological events
• Move a point step-by-step to closest event, locally updating structures each time
• Bypasses current CGAL implementation that involves roots of 8th order polynomial

Must locally re-triangulate if neighboring  
‘real’ circumspheres are broken 

Must locally re-triangulate if ‘imaginary’ 
circumspheres are broken 



Discussion

• E-tec is the fastest algorithm for computing topological entropy from 
an ensemble of trajectories

• Verified with experimental biofluid results (Tan, Roberts, et.al. Topological 
chaos in active nematics. (Submitted to Nature Physics) )

• First ensemble-based calculation generalizing to higher dimensions 

Near Future Work: Implement Ledoux idea in 3D
• Interested in 3D coherent set detection (similar to Allshouse work using 2D braiding)
• 3D active matter microflows is a rich area ready to be investigated through the lens 

of chaotic advection 
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Thank You. Questions?
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