Framework for an Ensemble-based Topological Entropy Calculation in Three Dimensions

Eric Roberts¹, Suzanne Sindi¹, Spencer Smith², Kevin Mitchell¹

¹University of California, Merced

²Mount Holyoke College

SIAM DS19 – May th, 2019

In a Nutshell

We build an algorithm for computing topological entropy that:

- 1. requires only an **ensemble** of trajectories
- 2. requires **no knowledge** of governing equations
- 3. scales **favorably in runtime** compared to other 2D ensemble-based approaches
- 4. can be **generalized to higher dimensions**

Topological Entropy in Rod-Stirring System

Topological entropy given by exponential growth rate of an advected material line

Bad mixing protocol Rod stirring process gives low topological entropy

One Period

Four periods

Source: Boyland, P. L., Aref, H. & Stremler, M. A. (2000).

Topological Entropy in Rod-Stirring System

Topological entropy given by exponential growth rate of an advected material line

Good mixing protocol Rod stirring process gives high topological entropy

Four periods

Source: Boyland, P. L., Aref, H. & Stremler, M. A. (2000).

Motivation for Studying Topological Entropy

Everyday Mixing

We typically think of turbulence when discussing fluid mixing

- Characterized by formation of eddies and vortices in high Reynold's number regimes
- Scalar (cream) is mixed in fluid (coffee) quickly

http://www.albaniles.org

Source: https://www.flickr.com/photos/kidmissile/4427545035/

Everyday Mixing

Turbulence doesn't occur when Reynold's number is low

- Low Reynold's number results from viscous flows or small length scales (bottom right)
- Scalar (oil) mixing in fluid (peanut butter) requires more work

Source: http://www.homemadeeats.com

laminar flow

Courtesy of Dogic Lab, UC Santa Barbara

Mixing from Chaotic Advection

Chaotic advection arises from from repeated *stretching* and *folding* of fluid.

- Produces an effective stirrer/mixer in laminar flows
- Commonly exploited in industry settings (paint mixing, food processing)
- We use chaotic advection to study mixing of a bio material on cellular scale

Video Credit: ah clem, "Depoe Bay, Oregon-salt water taffy pulling machine." <<u>https://www.youtube.com/watch?v=Y7tlHDsquVM</u>>

Chaotic Advection and Topological Entropy

Chaotic advection implies positive topological entropy (TE)

- TE is common proxy for quality of mixing
- What if velocity field or governing equations are unknown

Can we compute TE from only trajectory data?

In collaboration with the *Hirst Lab*, UC Merced

Can we compute TE from only a sparse set of trajectories?

Ref: Thiffeault, (2010)

How well do denselypacked bundles of microtubules mix?

Courtesy of *Dogic Lab*, UC Santa Barbara

Topological Entropy from Trajectory Data

Use trajectories as stirrers to deform and braid an "elastic loop"

Growth of loop gives topological entropy lower bound

Ref: Thiffeault, Jean-Luc. "Braids of entangled particle trajectories." (2010)

9

Topological Entropy from Trajectory Data

Use trajectories as stirrers to deform and braid an "elastic loop"

We are motivated by trajectory braiding work of Thiffeault, Budišić, Finn, and Allshouse

Finite Time Braiding Exponents (FTBE)

Encodes trajectories as braids and uses actions of braids to stretch loops

- Pros
 - i) Works for open, aperiodic trajectories
- Cons
 - *i)* Slow for high point densities
 - *ii)* No higher dimensional generalization

Ref: Thiffeault, Jean-Luc. "Braids of entangled particle trajectories." (2010)

9

Topological Entropy from Trajectory Data

Use trajectories as stirrers to deform and braid an "elastic loop"

Our contribution: Motivated by Marc Lefranc, we use a computational geometric approach to encode the loop and overcome the hardships below

Finite Time Braiding Exponents (FTBE)

Encodes trajectories as braids and uses actions of braids to stretch loops

- Pros
 - i) Works for open, aperiodic trajectories
- Cons
 - *i)* Slow for high point densities
 - *ii)* No higher dimensional generalization

See Budišić and Thiffeault. "Finite-time braiding exponents." (2015)

E-tec: Ensemble-based Topological Entropy Calculation

E-tec Snapshot

E-tec: Ensemble-based Topological Entropy Calculation (*Roberts, Sindi, Smith, Mitchell. Chaos.* **29**, 13124 (2019))

1. Choose trajectories to anchor loop

- Triangulate initial points (constrained to choice of initial band)

3. Evolve trajectories, stretching band and locally updating triangulation upon each point-triangulation edge collision. (Hollow point moves for reference.)

Detecting Trajectory-Band Collisions

We track two different types of **triangle collapse events**:

Detecting Trajectory-Band Collisions

We track two different types of **triangle collapse events**:

Tracking Loop Growth

We compute the topological length in the number of 2 edges **Triangulation** is used to **Total Number of Total Number of Total Number of** Edges = 2Edges = 6Edges = 4

Tracking Loop Growth

We compute the topological length in the number of 2 2 edges Loop complexity is hidden in 2 exponentially growing 2 integer weights 4 **Triangulation** is used to **Total Number of** Total Number of **Total Number of** Edges = 2Edges = 4Edges = 6

Tracking Loop Growth

- We compute the topological length in the number of edges
- Loop complexity is hidden in exponentially growing integer weights
- Triangulation is used to detect point-band collision events

Example in 2D

- Blue edges denote core triangulation of points
- Red edges denote core triangulations with nonzero loop 'weight'

A final band configuration

E-tec Output

Topological entropy estimate is the growth of sum of total band edge weights as a function of time

Why use E-tec?

1) Runtime scales nearly-linearly in size of ensemble

2) Triangulations generalize to **higher dimensions**

E-tec in 3D

3D Framework

We replace loop with an elastic sheet (red)

- Below, point 5 moves up, collapsing tetrahedron <1,2,3,5> with a point-face collision
- Local re-triangulation results in three new tetrahedra

Main Difficulty Generalizing to 3D

Edge-edge collisions are tricky

- Point 5 moves to the right and up
- Edges 2-3 and 1-5 collide

By re-thinking how to record the structure of the elastic sheet, we may sidestep this difficulty.

Dual E-tec

Dual E-tec in 2D

Original E-tec: counts number of times the loop crosses over each edge

Dual E-tec: counts number of times the loop **intersects** each edge

Original E-tec: Weighted edges in **red** with corresponding edge weights

Dual E-tec in 2D

Original E-tec: counts number of times the loop **crosses over** each edge

Dual E-tec: counts number of times the loop **intersects** each edge

Dual E-tec: Weighted edges in **blue** with corresponding edge weights

Dual E-tec Advantages

Loop or sheet may be represented at any time with any triangulation

• Band and triangulation are decoupled

Next Steps

Maintaining a Delaunay Triangulation

If 3D triangulation in Delaunay, edge-edge collisions will not occur

• Let's locally re-triangulate in a smarter way

New triangulation update

Maintaining a Delaunay Triangulation

Inspired by Hugo Ledoux, we re-triangulate at all topological events

- Move a point step-by-step to closest event, locally updating structures each time
- Bypasses current CGAL implementation that involves roots of 8th order polynomial

Must locally re-triangulate if neighboring 'real' circumspheres are broken

Must locally re-triangulate if '*imaginary*' circumspheres are broken

Discussion

- E-tec is the fastest algorithm for computing topological entropy from an ensemble of trajectories
- Verified with experimental biofluid results (*Tan, Roberts, et.al. Topological chaos in active nematics. (Submitted to Nature Physics)*)
- First ensemble-based calculation generalizing to higher dimensions

Near Future Work: Implement Ledoux idea in 3D

- Interested in 3D coherent set detection (similar to Allshouse work using 2D braiding)
- 3D active matter microflows is a rich area ready to be investigated through the lens of chaotic advection

References

Budišić, Marko, and Jean-Luc Thiffeault.

"Finite-time braiding exponents." *Chaos: An Interdisciplinary Journal of Nonlinear Science* 25.8 (2015): 087407

Haller, George.

"Lagrangian coherent structures." Annual Review of Fluid Mechanics 47 (2015): 137-162.

Hirst, Linda S., and Guillaume Charras.

"Biological physics: Liquid crystals in living tissue." Nature 544.7649 (2017): 164.

Roberts, Eric, et al.

"Ensemble-based topological entropy calculation (E-tec)." *Chaos: An Interdisciplinary Journal of Nonlinear Science* 29.1 (2019): 013124.

Sattari, Sulimon, Qianting Chen, and Kevin A. Mitchell.

"Using heteroclinic orbits to quantify topological entropy in fluid flows." *Chaos: An Interdisciplinary Journal of Nonlinear Science* 26.3 (2016): 033112.

Thiffeault, Jean-Luc, and Matthew D. Finn.

"Topology, braids and mixing in fluids." *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 364.1849 (2006): 3251-3266.

Ackowledgements:

Kevin Mitchell

Suzanne Sindi

Spencer Smith

Thank You. Questions?

CCBM NSF-CREST CENTER FOR CELLULAR AND BIOMOLECULAR MACHINES