Localization for MCMC: sampling high-dimensional posterior densities with local structure

Matthias Morzfeld^o, Xin T. Tong^{*}, Youssef Marzouk[#]

^oUniversity of Arizona ^{*}National University of Singapore [#]Massachusetts Institute of Technology

Supported by

This work was partially supported by Mission Support and Test Services, LLC, under Contract No. DE-NA0003624, with the U.S. Department of Energy, and supported by the Site-Directed Research and Development Program

Model:

 $x^k = \mathcal{M}(x^{k-1})$

Observations:

$$y^k = h(x^k) + \eta^k$$
, $\eta^k \sim \mathcal{N}(0, R)$, iid

Posterior distribution: $m(x^k|u^k) \propto m(x^k)m$

 $p(x^k|y^k) \propto p_0(x^k)p_l(y^k|x^k)$

EnKF: • Monte Carlo version of Kalman filter

• Uses ensemble to represent posterior distribution

Forecast step: $x_i^f = \mathcal{M}(x_i^{k-1})$
 $P^f = cov(x_i^f)$ Kalman gain: $K = P^f H^T (HP^f H^T + R)^{-1}$ Analysis $x_i^k = x_i^f + K(y^k - Hx_i^f + v_i)$
ensemble: $P_a = cov(x_i^k)$

Dimensions

- Typical number of vars.: 650 million
- Typical number of obs.: 2–10 million
- Typical ensemble size: 50–100

Why should ensemble mean or covariance have any accuracy?

(Part of the) solution: Localization

- Small ensemble size leads to spurious long-range correlations in forecast covariance
- Simple idea: set (small) elements in forecast covariance equal to zero.

Localization is required to make EnKF work.

	Inverse problem		Localized inverse problem	
Prior:	$p_0(x) = \mathcal{N}(\mu, C)$	$C \to C_{\rm loc}$	$p_{0,\mathrm{loc}}(x) = \mathcal{N}(\mu, C_{\mathrm{loc}})$	
Observation	s: $y = Hx + \eta$ $\eta \sim \mathcal{N}(0, R)$	$H \to H_{\rm loc}$	$y = H_{\rm loc} x + \eta$ $\eta \sim \mathcal{N}(0, R)$	
Likelihood:	$p_l(y x) = \mathcal{N}(Hx, R)$		$p_{l,\text{loc}}(y x) = \mathcal{N}(H_{\text{loc}}x, R)$	
Posterior:	$p(x y) \propto p_0(x)p_l(y x)$		$p_{\rm loc}(x y) \propto p_{0,\rm loc}(x)p_{l,\rm loc}(y x)$	

$$\begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 \end{pmatrix}$$

	Inverse problem		Localized inverse problem	
Prior:	$p_0(x) = \mathcal{N}(\mu, C)$	$C \to C_{\rm loc}$	$p_{0,\mathrm{loc}}(x) = \mathcal{N}(\mu, C_{\mathrm{loc}})$	
Observation	s: $y = Hx + \eta$ $\eta \sim \mathcal{N}(0, R)$	$H \to H_{\rm loc}$	$\begin{aligned} y &= H_{\rm loc} x + \eta \\ \eta &\sim \mathcal{N}(0, R) \end{aligned}$	
Likelihood:	$p_l(y x) = \mathcal{N}(Hx, R)$		$p_{l,\mathrm{loc}}(y x) = \mathcal{N}(H_{\mathrm{loc}}x,R)$	
Posterior:	$p(x y) \propto p_0(x)p_l(y x)$		$p_{\rm loc}(x y) \propto p_{0,\rm loc}(x)p_{l,\rm loc}(y x)$	

- If prior covariance matrix is "nearly" banded If each element of *Hx* depends significantly only on a few elements of *x Then: localized posterior mean/covariance are small perturbations of posterior mean/covariance*
- Same results hold when prior precision matrix is localized
- Localization is easy to apply in nonlinear problems (see NWP)

- 1. What is localization?
- 2. Why should we localize?
- 3. Numerical illustrations

High-dimensional local problems

- 1. State dimension, *n*, and number of observations, *k*, is large (k = O(n))
- 2. Prior covariance matrix *and* prior precision matrix are "nearly" banded
- 3. Each element of h(x) depends significantly only on a few elements of x
- 4. *R* is diagonal

Easy but popular example*: isotropic Gaussian

 $p(x) = \mathcal{N}(0, I)$

- Extreme example of a local problem
- Has been used to study importance sampling (particle filters) for highdimensional problems

7

• How does MCMC do when we sample an isotropic Gaussian and we increase its dimension?

^{*} Bickel et al., 2008, Bengtsson et al. 2008, Snyder et al. 2008, Snyder 2011, Snyder et al. 2015.

What type of MCMC is good for high-dimensional local problems?

- Should be trivial (no dependence on dimension).
- Gibbs sampler naturally makes use of local structure and produces independent samples, independently of dimension.
- Can Gibbs sampler "works well" in less trivial local problems?

Gibbs sampler for linear problems with banded structure

Assumptions:

- 1. Target density is Gaussian $p(x) = \mathcal{N}(\mu, C)$
- 2. *C* is *q*-block-tridiagonal, condition number is C

 $[C]_{i,j} = 0$ for $(i,j) \notin \{(i,i), (i,i+1), (i,i-1), i = 1, \cdots, m\}.$

Result:

Let x^k be the samples of the Gibbs sampler (block-size q). The distribution of x^k converges to p geometrically fast in all coordinates, and we can couple x^k and a sample $z \sim \mathcal{N}(\mu, C)$

$$E\|C^{-1/2}(x^k - z)\|^2 \le \beta^k n(1 + \|C^{-1/2}(x^0 - \mu)\|^2),$$

$$\beta \le \frac{2(1 - \mathcal{C}^{-1})^2 \mathcal{C}^4}{1 + 2(1 - \mathcal{C}^{-1})^2 \mathcal{C}^4},$$

Convergence *rate* independent of dimension
 Convergence if quick if condition number is "small"

Gibbs sampler for linear problems with banded structure

$p(x) = \mathcal{N}(\mu, \Omega^{-1})$

Target density is Gaussian p(x) → N(μ, C) Ω is q-block-tridiagonal, condition number is C

- - $[\Omega]_{i,j} = 0 \quad \text{for} \quad (i,j) \notin \{(i,i), (i,i+1), (i,i-1), i = 1, \cdots, m\}.$

Result:

Assumptions:

Let x^k be the samples of the Gibbs sampler (block-size q).

The distribution of x^k converges to p geometrically fast in all coordinates, and we can couple x^k and a sample $z \sim \mathcal{N}(\mu, C)^z \sim \mathcal{N}(\mu, \Omega^{-1})$

$$\begin{split} E\|C^{-1/2}(x^k-z)\|^2 &\leq \beta^k n(1+\|C^{-1/2}(x^0-\mu)\|^2),\\ \beta &\leq \frac{2(1-\mathcal{C}^{-1})^2\mathcal{C}^4}{1+2(1-\mathcal{C}^{-1})^2\mathcal{C}^4}, \quad \beta \leq \frac{\mathcal{C}(1-\mathcal{C}^{-1})^2}{1+\mathcal{C}(1-\mathcal{C}^{-1})^2}, \end{split}$$

1. Convergence rate independent of dimension 2. Convergence if quick if condition number is "small"

Summary: Gibbs sampler

Theorem by Bickel & Lindner (2012) Convergence rate is independent of dimension if:

1. Target density is Gaussian

or

- 2. Covariance matrix is q-block-tridiagonal, condition number is small
- 3. Precision matrix is q-block-tridiagonal, condition number is small

Gibbs sampler useful for high-dimensional Gaussians with local statistical interactions (correlation & conditional dependence)

Metropolis-within-Gibbs:

1. Propose local move using block-Gibbs sampler for prior

 $x'_{j} \sim p(x_{j}|x_{1}^{k+1}, \dots, x_{j-1}^{k+1}, x_{j+1}^{k}, \dots, x_{n}^{k})$

2. Accept local move with probability

$$a = \min\left\{1, \frac{\exp\left(-0.5||R^{-1/2}(y - h(x'))||^2\right)}{\exp\left(-0.5||R^{-1/2}(y - h(x))||^2\right)}\right\}$$

- If precision matrix is given and banded: condition on neighbors only
- Linear algebra for matrices of size of the blocks, not overall dimension
- Proposal covariance independent of dimension.
- Acceptance high because change is local
- Acceptance rate independent of dimension?

Function space MCMC:

- 1. Discretization refines
- 2. Dimension increases
- 3. Number of obs. const.
- 4. "Effective dimension" const.
- 5. MCMC is dimension invariant

- Low-rank priors
- Small number of obs.
- Low-rank prior to posterior updates
- Low effective dimension

MCMC for local problems:

- 1. Discretization is const.
- 2. Dimension increases
- 3. Number of obs. increases.
- 4. "Effective dimension" increases.
- 5. MCMC is dimension invariant

- High-rank but sparse priors
- Large number of obs.
- High-rank prior to posterior updates
- Large effective dimension

- 1. What is localization?
- 2. Why should we localize?
- 3. Numerical illustrations

Problem formulation

- Gaussian prior (Laplacian as precision)
- Linear problem (convolution)
- Dimension is large ~10⁴
- Effective dimension huge

$$p(x) = \mathcal{N}(0, \delta^{-1}L^{-1})$$

$$y = Hx + \eta, \quad \eta \sim \mathcal{N}(0, \lambda^{-1}I)$$

$$p(x|y) \propto \exp\left(-\frac{\lambda}{2}||Hx - y||^2 - \frac{\delta}{2}||Lx||^2\right)$$

Image deblurring — Gibbs sampler

- Only nearby pixels are blurred
- *H* is banded
- Prior precision is banded
- Posterior precision is banded

- Number of "large" eigenvalues increases with image size (dimension)
- Effective dimension increases with image size (dimension)

Image deblurring — Gibbs sampler

Image size	32 x 32	64 x 64	128 x 128	256 x 256
Dimension	1,024	4,096	16,348	16,536
Eff. Dimension	$4.8 \cdot 10^{8}$	7.4 · 10 ⁹	1.2 • 1011	-
IACT (Gibbs)	2.92	2.97	1.74	1.11
Blocksize (Gibbs)	16	16	32	64

Image deblurring — Gibbs sampler

- Scales well to larger problems ($10^6 10^7$)
- No need to assemble matrices assemble required blocks on the fly
- See Jesse Adam's talk (yesterday)

Goal: Estimate initial conditions of L96, given noisy observations at time *T*

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = (x_{i+1} - x_{i-2})x_{i-1} - x_i + 8$$

$$y = H\mathcal{M}_{0 \to T}(x_0) + \eta, \quad \eta \sim \mathcal{N}(0, I)$$

Problem formulation

- Gaussian prior ("Climatology")
- L96 dynamics (RK4)
- Dimension n = 40 or n = 400
- k = n/2 observations at time T = 0.2
- Eff. dim $n_{\text{eff}} = 18$ or $n_{\text{eff}} = 181$
- Number of "large" evals increases with *n*

Algorithms tested

- 1. pCN
- 2. MALA
- 3. l-MwG

Localization

- *NWP*: delete spurious correlations and restrict influence of observations to a neighborhood
- *Inverse problems*: enforce prior statistical interactions (correlations/ conditional dependencies) to be local and restrict influence of an observation to its neighborhood
- Localization introduces small errors if the problem is "local"

MCMC for localized problems

- Some MCMC algorithms struggle on local problems
- MCMC based on Gibbs sampler may be promising
- Gibbs sampler prototypical algorithm for exploring local structure
- Notion of "high-dimension" different from function space MCMC

Thank you.

