Efficient Partial Order Preserving Unsupervised Feature Selection on Networks

.

Xiaokai Wei, Sihong Xie, Philip S. Yu

Department of Computer Science, University of Illinois at Chicago

Feature Selection

- Effective Way for Dimension Reduction
 - Faster learning time
 - Better prediction accuracy
 - Better Interpretability

Supervised v.s Unsupervised

- Supervised Feature Selection
 - Relatively easy
 - Class label can provide clear guidance
- Unsupervised Feature Selection
 - More difficult due to lack of labels
 - Various criteria have been proposed (e.g., max variance, Laplacian Score [1])
- Pseudo-label Based Approaches
 - Generate cluster labels from attributes and perform sparse regression

Feature Selection on Networks

More and More Network Data

- Traditional Feature Selection
 - i.i.d assumption
- Feature Selection on Networks
 - Data are not i.i.d (homophily effect)

Feature Selection on Networks

- New Challenges and Opportunities
- How to effectively exploit network links?
 - Can help select better features?
- Efficiency
 - Real-world social/information networks can be huge
 - DBLP has more than 2 million CS articles
 - Facebook: > 1 billion users
 - Linkedin: > 300 million users

Limitations of Existing Work

- Most existing work cannot exploit link structure
 - LUFS[3] is the only work that attempts to use links for unsupervised feature selection
- Pseudo-labels can be unreliable
- Not Efficient
 - Rely on intensive matrix computation to converge to local optima

- A New Way to Exploit Homophily Effect
 - Effective and efficient

Key Intuition

Figure 1: An example network with 9 nodes

- Neighbors are more likely to be from the same class than two random non-neighbors
- E.g., friends in social network, cited paper/citing paper, co-authors
- Selected features should make neighbors similar and non-neighbors not so similar

- Formulate the Intuition into Partial Order
 - Features that preserve such partial orders are likely to be high-quality ones

DEFINITION 4. Link-based Partial Order We formulate such property as partial order $j >_i k$, where node v_j and node v_k are in the linked set and unlinked set of node v_i , respectively. Node v_i is referred to as the pivot of this partial order. Such partial order is denoted as a triplet (i, j, k) or $j >_i k$.

$$(3.1) \quad sim(v_i, v_j) > sim(v_i, v_k), v_j \in \mathcal{L}(v_i), v_k \in \mathcal{U}(v_i)$$

- Example: Paper Citation Network
 - Papers in Machine Learning, Database, OS...
 - Features are the terms in the paper
- Indiscriminative Terms
 - E.g., propose, compare, which does not help preserve partial order

Discriminative Terms

- E.g., SVM, classification, database
- Neighbors are more likely to share these terms than non-neighbors.

Formulations

- Selection indicator: $\mathbf{w} = (w_1, w_2, \dots, w_D)^T$
- Similarity with selected features

$$s_{ij} = sim(diag(\mathbf{w})\mathbf{x}_i, diag(\mathbf{w})\mathbf{x}_j)$$

$$s_{ijk} = s_{ij} - s_{ik}$$

$$= \mathbf{x}_i^T diag(\mathbf{w})\mathbf{x}_j - \mathbf{x}_i^T diag(\mathbf{w})\mathbf{x}_k$$

- Large s_{ijk} indicates the partial order is well preserved

- Link function
 - Transform s_{ijk} to loss
 - Should be monotonically non-decreasing

$$l(j >_i k \mid \mathbf{w}) = f(s_{ijk} \mid \mathbf{w})$$

• Objective function: $\max_{\mathbf{w}} L(>) = \sum_{(i,j,k)\in\Omega} l(j>_i k \mid \mathbf{w})$ $= \sum_{i\in V} \sum_{j\in\mathcal{L}_i} \sum_{k\in\mathcal{U}_i} f(s_{ijk} \mid \mathbf{w})$

s.t.
$$w_i \in \{0, 1\}, \sum_{i=1}^{D} w_i = d$$

Simple POP

- Most simple instantiation
 - Identity function as link function
- Linked Score & Unlinked Score

$$score(a) = \sum_{(i,j,k) \in \Omega} I(i,j,a) - \sum_{(i,j,k) \in \Omega} I(i,k,a)$$
 Linked Score Unlinked Score

- Selection Criterion
 - The difference between linked score and unlinked score

Simple POP

- Example: Paper Citation Network
 - Papers in Machine Learning, Database, OS...
 - Features are the terms in the paper
- Indiscriminative Terms
 - E.g., propose, compare
 - High linked score and high unlinked score
- Discriminative Terms
 - E.g., SVM, classification, database
 - High linked score and low unlinked score

Probabilistic POP

Assumption:

– Partial orders are generated by s_{ijk} in a probabilistic way

Approach:

- Probability partial order $j >_i k$ is preserved

$$P(j >_i k \mid \mathbf{w}) = \sigma(s_{ijk})$$

$$\sigma(x) = 1/(1 + e^{-x})$$

Probabilistic POP

$$P(j >_i k \mid \mathbf{w}) = \sigma(s_{ijk})$$

 $\sigma(x) = 1/(1 + e^{-x})$

Maximize the Log-likelihood:

$$\max_{\mathbf{w}} \log P(>|\mathbf{w}) = \sum_{(i,j,k)\in\Omega} \log P(j>_i k|\mathbf{w})$$

$$= \sum_{(i,j,k)\in\Omega} \log \sigma(s_{ijk})$$
s.t. $w_i \in \{0,1\}, \sum_{i=1}^{D} w_i = d$

Max Margin POP

Max Margin POP

- Inspired by Structural SVM
- Aim to make neighbors/non-neighbors well separated

$$\begin{aligned} & \underset{\mathbf{w}}{\min} & \sum_{(i,j,k) \in \Omega} \mu_{ijk} \\ & \text{s.t.} & s_{ijk} \geq 1 - \mu_{ijk}, \forall (i,j,k) \in \Omega \end{aligned} \qquad \qquad \underset{\mathbf{w}}{\max} & \sum_{(i,j,k) \in \Omega} -\max(0,1 - s_{ijk}) \\ & w_i \in \{0,1\}, \; \sum_{i=1}^D w_i = d \end{aligned}$$

Summary

Instantiation	SPOP	PPOP	MMPOP
Link function	Identity	Log of Sigmoid	Negative hinge
Evaluate features jointly	No	Yes	Yes

Connection to AUC

- AUC (Area Under ROC Curve)
 - Metric for evaluating binary prediction such as recommender system and link prediction

$$AUC(v_i) = \frac{1}{|\mathcal{L}_i||\mathcal{U}_i|} \sum_{j \in \mathcal{L}_i} \sum_{k \in \mathcal{U}_i} I(s_{ijk} > 0)$$

- Partial Order Preserving Principle
 - PPOP and MMPOP are continuous approximation of AUC (with logistic loss and hinge loss, respectively)

Optimization

- '0/1' Integer Programming
 - Relax '0/1' constraints on w_i
- Large Number of Partial Order Triplets:
 - -O(|V||E|)
 - Stochastic (sub)gradient descent
 - Sample a small portion of triplets

(Sub)Gradient Update

 Each iteration takes O(m) (m: avg. number of nonzero features)

Stochastic (Sub) Gradient Descent

Simple POP:

- Gradient
$$\frac{\partial l(j >_i k)}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} s_{ijk}$$

Probabilistic POP:

$$\frac{\partial \vec{l}(j >_i k)}{\partial \mathbf{w}} = \frac{e^{-s_{ijk}}}{1 + e^{-s_{ijk}}} \cdot \frac{\partial}{\partial \mathbf{w}} s_{ijk}$$

• Max Margin POP:

$$\frac{\partial l(j >_i k)}{\partial \mathbf{w}} = \begin{cases} \frac{\partial}{\partial \mathbf{w}} s_{ijk} & \text{if } s_{ijk} < 1\\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\partial}{\partial w_p} s_{ijk} = \begin{cases} 1 & \text{if } x_{ip} = 1 \& x_{jp} = 1 \& x_{kp} = 0 \\ -1 & \text{if } x_{ip} = 1 \& x_{jp} = 0 \& x_{kp} = 1 \\ 0 & \text{otherwise} \end{cases}$$

Datasets

- Citeseer (citation network)
- Cora (citation network)
- Wikipedia (wiki articles)

Table 2: Statistics of three datasets

Statistics	Citeseer	Cora	Wiki
# of instances	3312	2708	3363
# of links	4598	5429	33219
# of features	3703	1433	4973
avg. # of non-zero features per instance	31.75	18.17	630.57
# of classes Page 22 of 29	6	7	19

Baselines

- All Features
- Link Only
- Laplacian Score [1]
- UDFS [2] (Unsupervised Discriminative Feature Selection)
- LUFS [3] (Linked Unsupervised Feature Selection)

Efficiency

POP

 Much faster and able to perform online update by SGD

UDFS/LUFS

 Rely on intensive matrix factorization to converge to a local optima

Table 3: Running time (seconds) of different feature selection algorithms

Dataset	LS	UDFS	LUFS	SPOP	PPOP	MMPOP
Citeseer	10	1234	1420	1	2	2
Cora	5	161	113	1	1	1
Wiki	23	2536	2788	19	22	19

- Clustering Performance
 - KMeans on selected features
 - Accuracy and NMI reported

(a) Accuracy on Citeseer

(b) NMI on Citeseer

(c) Accuracy on Cora

(e) Accuracy on Wiki

(d) NMI on Cora

(f) NMI on Wiki

- Partial Order Preserving Property
 - Potential for link prediction

(a) Precision@1 (b) on Citeseer on

n@1 (b) Precision@1 on Cora

(c) Precision@1 on Wiki

Figure 3: 1NN Results on Three Datasets

Conclusion

Conclusion

- New criterion for unsupervised feature selection
- More discriminative features
- Much less running time
- Experimental results verified the effectiveness and efficiency of the proposed approach