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Climate and Its Sensitivity

Let's say CO, doubles:
How will “climate™ change?

1. Climate is in stable equilibrium
(fixed point); if so, mean temperature
will just shift gradually to its new
equilibrium value.

2. Climate is purely periodic;
if s0, mean temperature will
(maybe) shift gradually to its
new equilibrium value.
But how will the period, amplitude
and phase of the limit cycle change?

3. And how about some “real stuff”
now: chaotic + random?

Ghil (in Encycl. Global Environmental
Change, 2002)

a) Equilibrium sensitivity
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Temperatures and GHGs

Greenhouse gases (GHGS) go up,

temperatures go up:

It's gotta do with us, at least a bit,

doesn't it?

Wikicommons, from

Hansen af al (PNAS, 2006):

see also hitpJ/data giss.nasa.gov/
gistemp/graphs/
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Urriortunzizly, trings
o't 2l izt zasy!

Try to achieve better

interpretation of, and

agreement between,
models ...

Ghil, M., 2002: Natural climate vanability,

n £ L;Lu a of Global Environmenial

I_.h*r?;e T. Munn (Ed.), Vol. 1, Wiley

Natural variability introduces addibonal complexity into
the anthropogenic cimate change problem

The most common interpretation of observations and
GOM simulztions of dimate change is stll in terms
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Global warming and

its socio-economic impacts

Mun-Mooa Avmaces w0 Assessp Rases ron Sueracs Wanmess

Temperatures rise:
 What about impacts?
 How to adapt?

The answer, my friend,
Is blowing in the wind,
l.e., it depends on the
accuracy and reliability
of the forecast ...

Source : IPCC (2007),
AR4, WGI, SPM
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Outline

« Natural climate variability as a source of uncertainties
- sensitivity to initial data =» error growth
— sensitivity to model formulation = see below!




Deterministic pradicions | Verificato

Ensemble forecast of Lothar (surface pressure)
Start date 24 December 1929 ' Forecast time T+42 hours
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Exponential divergence vs. “coarse graining”

The classical view of dynamical
systems theory is:

positive Lyapunov exponent =
trajectories diverge exponentially

But the presence of multiple
regimes implies a much
more structured behavior
in phase space

Still, the probability distribution
function (pdf), when calculated
forward in time, is pretty
smeared out

L. A. Smith (Encycl. Atmos. Sci., 2003)




So what'’s it gonna be like, by 21007
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Outline

» Uncertainties and how to fix them
— structural stability and other kinds of robustness
— non-autonomous and random dynamical systems (NDDS & RDS)




How important are different sources of
uncertainty?

= Varies, but typically no single source dominates.

Internal
variability

Carbon cycle

Structural
uncertainty

19
15 o )

precipitation changes for the 2080s relative to
box in SE England

1 Uppsala/Nordica

“arameter
uncertainty

Downscaling

Source: Met Office




Can we, nonlinear dynamicists, help?

The uncertainties
might be intrinsic,

rather than mere o
“tuning problems”
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If so, maybe
stochastic structural
stability could help!

Might fit in nicely with
recent taste for

“stochastic
parameterizations”

Flgure 7.5-1. The three (owers of differenuable dynamics.

The DDS dream of stwuctunal stability (from Abraham & Marsden, 1978)




Non-autonomous Dynamical Systems

A linear, dissipative, forced example: forward vs. pullback attraction

Consider the scalar, linear ordinary differential equation (ODE)
rT=-ar+ot, a>0,0>10.

The autonomous part of this ODE, I — —aux . is dissipative
and all solutions l’(t?-'l'o) = x(t;x(0) = xq) convergeto0as ¢ —+ +o0.

What about the non-autonomous, forced QDE? As the energy being put into the system
by the forcing is dissipated, we expect things to change in time. In fact, if we “pull back™
far enough, replace x(f, X)) by x(s.t;xo) = x(s.t:x(s) = xq).

s{s. 7. rp). with rg varving
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RDS, llI-

A random attractor .4(w) is both invariant and “pullback™ attracting:
(a) Invariant: (1, w)A(w) = A(B(Hw).
(b) Aftracting: VB C X, lim,_, . dist(o(t,60(—t)w)B, A(w)) = 0 a.s.

Pullback attraction te A{ m)
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Climate Change and Climate Sensitivity



Sample measure supported by the R.A.




Random attractor of the stochastic Lorenz system

Snapshot of the random attractor (RA)

@ A snapshot of the RA, .A(w), computed at a fixed time ¢ and for the

same realization w; it is made up of points transported by the stochastic
flow, from the remote pastt — 7, T >> 1.

@ We use multiplicative noise in the deterministic Lorenz model, with the
classical parameter values b =8/3, ¢ = 10, and r = 28.

@ Even computed pathwise, this object supports meaningful statistics.




RDS, llI-

A random attractor .A(w) is both invariant and “pullback™ attracting:
(2) Invariant: (1, w)A(w) = A(B(Hw).
(b) Aftracting: VB C X, lim,_, .. dist(p(t,60(—1t)w)B, A(w)) =0 as.

Pullback attraction te A{ m)

B( 8-, ) " s :
B{ &(—1, o) (@i X (94 yo X

Q.M (@ )=A(BN)w® |

Climate Change and Climate Sensitivity



Non-autonomous Dynamical Systems

A linear, dissipative, forced example: forward vs. pullback attraction
Consider the scalar, linear ordinary differential equation (ODE)

r==—-ar+oct. a>0.0>0.

The autonomous part of this ODE, I — —aur . is dissipative
and all solutions ;z;(t;_ro) =il .r(()) = 1,-0) convergeto0as =+ +0oC.

What about the non-autonomous, forced ODE? As the energy being put into the system
by the forcing is dissipated, we expect things to change in time. In cht, if we “pull back™
far enough, replace x(f X)) by x(s.t;xo) = x(s.t:x(s) = xq).

and let s — —o¢ , we get th
pullback attractor a = a(f)
in the figurs,

' -
L

=S0F o
'
—-100F !

-150F -

x T

rel with = P ValvIing

) -
e i s L
J




Outline

llustrative examples
— the Lorenz convection model




Sample measure supported by the R.A.




Sample measures supported by the R.A.

@ We compute the probability measure on the R.A. at some fixed time ¢,
and for a fixed realization «. We show a “projection”, [ p.(x. y.z)dy,
with multiplicative noise: dx;=Lorenz(x;. Xz, x3)dt + o x;,dW:;i € {1,2.3}.

@ 10 million of initial points have been used for this picture!

Climate Change and Climate Sensitivity



Sample measure supported by the R.A.




Sample measure supported by the R.A.

Sample measures evolve with time.

@ Recall that these sample measures are the frozen
statistics at a time { for a realization w.

@ How do these frozen statistics evolve with time?

@ Action!

Climate Change and Climate Sensitivity




Outline

* Nonequilibrium climate sensitivity




Climate and Ilts Sensitivity

Let’s say CO, doubles:
How will “climate™ change?

1. Climate is in stable equilibrium
(fixed point); if so, mean temperature
will just shift gradually to its new
equilibrium value.

2. Climate is purely periodic;
if so, mean temperature will
(maybe) shift gradually to its
new equilibrium value.
But how will the period, amplitude
and phase of the limit cycle change?

3. And how about some “real stuff”
now: chaotic + random?

Ghil (Encycl. Global Environmental
Change, 2002)

a) Equilibrium sensitivity
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Classical Strange Attractor

Physically closed system, modeled
mathematically as autonomous
system: neither deterministic
(anthropogenic) nor random
(natural) forcing.

The attractor is strange, but still
fixed in time ~ “irrational” number.

Climate sensitivity ~ change in the
average value (first moment) of the
coordinates (x, y, z) as a parameter
A changes.




Random Attractor

Physically open system, modeled
mathematically as non-autonomous
system: allows for deterministic
(anthropogenic) as well as random
(natural) forcing.

The attractor is “pullback™ and
evolves in time ~ “imaginary” or

Climate sensitivity ~ change in the
statistical properties (first and
higher-order moments) of the
attractor as one or more
parameters (A, d, ...) change.

~ r oA
- [ i ad’ ”~ 4 Tl =t o~ — ;
\ AIH‘ \ CNCYCIODEala Qi "‘A‘"n.'.“wﬁ.'.r-’f"fl'-'.ﬂ

N A As 4N
QCIETICES, & ed., LL.:IT.‘_




Parameter dependence - l

It can be smooth or it can be rough:
Nino-3 SSTs from intermediate coupled model
for ENSO (Jin, Neelin & Ghil, 1994, 1996)

Skewness & kurtosis of the SSTs:
time series of 4000 years,

Ad=3-10"
Skewness depsndence
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M. Chekroun & D. Kondrashov (work in progress)




Sample measures for an NDDE model of ENSO
The Galanti-Tziperman (GT) model (JAS, 1999)

‘fi—f = —epT (t) = My(T(t) — Teup(h(t))), Neutral delay-differential equation (NDDE),
derived from Cane-Zebiak and Jin-Neelin

— M.o—Em(T+T) g _ - _ models for ENSO: T'is East-basin SST

ol At -7 —m) “and h is thermacline depth.

—Myrie~t=(T+m)y(t — 7 — )Tt -

+Myme~ T p(t - 2)T(t - ).

Seasonal forcing given by
n(t) =1+ ecos(wt + o). : !
The pullback attractor and its :
invariant measures were computed.

Figure shows the changes in the mean,

2™ & 4™ moment of A(t), along with the
Wasserstein distance d,,, for changes

of 0-5% in the delay parameter 7, .

Note intervals of both smooth & rough dependence!
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Sample measures for an NDDE model of ENSO
The Galanti-Tziperman (GT) model (JAS, 1999)

% = —epT(t) = My(T(t) — Toyp(h(t))), Neutral delay-differential equation (NDDE),
derived from Cane-Zebiak and Jin-Neelin
models for ENSO: Tis East-basin SST

h(t) = Mye~ =" = )h(t — T —T) and h is thermocline depth.

Seasonal forcing given by

Blt) = 1 + ecos(wt + @). ; 3

The pullback attractor and its

Crange S o pe Koy |

invariant measures were computed. SE——

X

Figure shows the changes in the mean, : . |
2" & 4™ moment of h(f), along with the & .
Wasserstein distance d,,, for changes /L_J =l
of 0-5% in the delay parameter 7, . R S —

Change » ol .

Note intervals of both smooth & rough dependence!




Pullback attractor and invariant
measure of the GT model

The time-dependent pullback attractor of the GT model supports an invariant
measure » = (i), whose density is plotted in 3-D perspective.

The plot is in delay coordinates h(i+1) vs.

h(f) and the density is highly

concentrated along 1-D filaments and,

furthermore, exhibits sharp, near-0-D g e i M gt
peaks on these filaments. :

3%

The Wasserstein distance d,,

between one such configuration, ** |

at given parameter values, and .-

another one, at a different setof |
values, is proportional to the work = ™,
needed to move the total probability = v
mass from one configuration to the other. i -

028
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Climate sensitivity 7/ can be defined as
v = Odw ,f’!f)T




How to define climate sensitivity or,
What happens when there’s natural variability?
This definition allows us to watch how “the earth moves,” as it is affected

by both natural and anthropogenic forcing, in the presence of natural
variability, which includes both chaotic & random behavior:

™2 depenamtt risnant mesmere L2838 o

V= ('ﬁ)([\\' / 'Ot
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Outline

« Pull vs. snap: a tale of two (kinds of) attractors




Conjectures

» Snapshot attractors "' approximate the mathematically rigorous

pullback attractor .
» The convergence time of orbits started from a set of
initial states to the pullback attractor is characterized
by the system’s least-negative Lyapunov exponent.
» Moreover, when measuring the convergence of the
invariant measures by Wasserstein distance D,
one has the following estimate on the lagged autocorrelations:

C(7) < const x Dy (p, py)

Here p is the sample measure on the pullback attractor, and
p- is the sample measure on the T-pullback attractor.

) Romeiras, Grebogi & Ott (Phys. Rev. A, 1990), Tél & colleagues — snapshot;
) Sell (Trans. AMS, 1967), L.-S. Young (JSP, 2002, etc.) — pullback & random.




Outline

« Conclusions and references

- natural variability and anthropogenic forcing: the “grand unification”
— selected bibliography




Concluding remarks, | - RDS and RAs

Summary

« Achange of paradigm from closed, autonomous systems
to open, non-autonomous ones.

« Random attractors are (i) spectacular, (ii) useful, and
(i) just starting to be explored for climate applications.

Work in progress

+ Study the effect of specific stochastic parametrizations
on model robustness.

 Applications to intermediate models and GCMs.

+ Implications for climate sensitivity.

» Implications for predictability?




Yet another (grand?) unification

Lorenz (JAS, 1963)
Climate is deterministic and autonomous,
but highly nonlinear.

P8

{13

Trajectories diverge exponentially,
forward asymptotic PDF is multimodal.

PR

Hasselmann (Tellus, 1976) a\\
Climate is stochastic and noise-driven, RESTN
but quite linear. \%
Trajectories decay back to the mean, 3
forward asymptotic PDF is unimodal. o e et e 1701

A
| e ey
v v

Grand unification (?)

Climate is deterministic + stochastic,
as well as highly nonlinear.

Internal variability and forcing interact = :
strongly, change and sensitivity N
refer to both mean and higher moments. _ xg




Concluding remarks, Il -
Climate change & climate sensitivity

What do we know?

» It's getting warmer.

»  We do contribute to it.

« So we should act as best we know and can!

What do we know less well?

« By how much?
- Is it getting warmer ...
— Do we contribute to it ...
« How does the climate system (atmosphere, ocean, ice, elc.) really

work?
» How does natural variability interact with anthropogenic forcing?

What to do?

» Better understand the system and its forcings.

» Explore the models’, and the system’s, robustness and sensitivity
- stochastic structural and statistical stability.
- linear response = response function + susceptibility function!
— beyond linear response - use Wasserstein distance!!




