Objective Eulerian Coherent Structures

Mattia Serra

24-05-17

joint work with: George Haller (ETH)

Different approaches to coherent structures detection (next talk)

$$\dot{x} = v(x, t), \qquad x(t, t_0, x_0) := F_{t_0}^t(x_0)$$

Geometric methods

- Different types of coherence
- Codimension-1 material structures
- Effective over short times
- Requires data on a dense grid

Set-based methods

- Vortex-type structures
- Focus on the interior of coherent regions
- Work with sparse data

Diagnostic methods

Objective Eulerian Coherent Structures

From the asymptotic to the instantaneous limit

stability

stable and unstable manifolds	Lagrangian Coherent Structures	?
$t - t_0 \to \infty$	$t - t_0 = T$	$t - t_0 \to 0$

Motivation

Oil spill

Search & Rescue

Flow control

Challenges

- Multiple and unknown time scales \rightarrow Which integration time T=t-t₀?
- Finite-time and Finite-size data

Need

- **Real-time** identification of the **Eulerian skeleton** of the flow
- **Objectivity** \rightarrow self-consistent prediction for material transport

Objective deformation measures

Set-up and notation

$$\dot{x}=v(x,t),\ x\in U\subset \mathbb{R}^2,\ t\in [a,b]$$

Lagrangian $(t-t_0=T)$

 $F_{t_0}^t(x_0) = x(t; x_0, t_0)$

$$F_{t_0}^t(x_0 + \zeta_0(x_0)) = F_{t_0}^t(x_0)\zeta_0(x_0) + \nabla F_{t_0}^t(x_0)\zeta_0(x_0) + \mathcal{O}(|\zeta_0(x_0)|^2)$$

$$\zeta_t(x_0) := \nabla F_{t_0}^t(x_0)\zeta_0(x_0) + \mathcal{O}(|\zeta_0(x_0)|^2)$$

$$\zeta_t(x_0)| = \sqrt{\langle \zeta_0(x_0), [\nabla F_{t_0}^t(x_0)]^\top \nabla F_{t_0}^t(x_0) \zeta_0(x_0) \rangle}$$

$$C_{t_0}^t(x_0) \quad \text{Right Cauchy-Green tensor}$$

Eulerian (t-t₀
$$\rightarrow$$
0)

$$\frac{d}{dt}|\zeta_t(x_0)|_{t=t_0} = \frac{\langle \zeta_0(x_0), \frac{1}{2}([\nabla v(x_0,t_0)]^\top + \nabla v(x_0,t_0))\zeta_0(x_0)\rangle}{\langle \zeta_0(x_0), \zeta_0(x_0)\rangle}$$

$$\frac{d}{dt}C_{t_0}^t(x_0)|_{t=t_0} = I + 2S(x_0, t_0)(t - t_0) + \mathcal{O}(t - t_0)^2$$

Types of deformation

Material stretch rate

$$\dot{q}(x, x', t) := \frac{\langle x', S(x, t)x' \rangle}{\langle x', x' \rangle}$$

Averaged material stretch rate $\dot{Q}_t(\gamma) := \int_{\gamma} \dot{q}(x, x', t) ds$

Material shear rate

$$\dot{p}(x, x', t) := \frac{\langle x', 2S(x, t)Rx' \rangle}{\langle x', x' \rangle}$$

Averaged material shear rate $\dot{P}_t(\gamma) := \int_{\gamma} \dot{p}(x,x',t) ds$

Objective Eulerian Coherent Structures

Parabolic OECS

Different types of coherence

 $\lim_{T\to 0} LCSs$

No leading order variation in material shear rate

$$\delta \dot{P}_t(\gamma) = 0$$

Elliptic OECS

No leading order variation in material strain rate

$$\delta \dot{Q}_t(\gamma) = 0$$

Variational definition of OECSs

$$\dot{Q}_t(\gamma) := \int_{\gamma} \dot{q}(x, x', t) ds \qquad \dot{q}(x, x', t) := \frac{\langle x', S(x, t) x' \rangle}{\langle x', x' \rangle}$$

First variation w.r.t. free endpoints

$$\delta \dot{Q}_t(\gamma) = \frac{1}{\sigma} \left[\langle \partial_{x'} \dot{q}, h \rangle \right]_0^{\sigma} + \frac{1}{\sigma} \int_0^{\sigma} \left[\partial_x \dot{q} - \frac{d}{ds} \partial_{x'} \dot{q} \right] h \, ds = 0$$

Euler-Lagrange equations

$$\partial_x \dot{q}(x, x', t) - \frac{d}{ds} [\partial_{x'} \dot{q}(x, x', t)] = 0$$

4D Initial conditions ?

...

 $\delta \dot{Q}_t(\gamma) = 0$

t

 $t + \tau$

Equivalent Null-Geodesics formulation of OECSs

OECSs are Null Geodesics of the Lorentzian metrics:

Type of OECS	$\mathbf{Metric}: \; g(u,u) = \langle u,Au angle$
Hyperbolic & Parabolic	A(x,t) = 2S(x,t)R
Elliptic	$A_{\mu}(x,t) = S(x,t) - \mu I, \mu \in \mathbb{R}$

Closed null geodesics = Coherent Vortex Boundaries

Type of OECS	Metric : $g(u, u) = \langle u, Au \rangle$
Hyperbolic & Parabolic	A(x,t) = 2S(x,t)R
Elliptic	$A_{\mu}(x,t) = S(x,t) - \mu I, \mu \in \mathbb{R}$

 $\mu = 0$

Theorem

M. Serra & G. Haller, Efficient Computation of Null Geodesics with Applications to Coherent Vortex Detection, Proc. Roy. Soc. A, (2017)

- OECSs from **satellite-inferred** ocean velocity data
- OECSs from **measured** ocean velocity data
- LCSs from **global atmospheric reanalysis** velocity data

Elliptic OECSs in the ocean (vortical structures)

 $\dot{x} \approx \nabla^{\perp} h(x,t); \ h(x,t) =$ sea-surface height at x at time t. $E \# i := elliptic \ OECSs, \ E \# i := elliptic \ OECSs \ in \ correspondence \ of \ Lagrangian \ coherent \ vortices$

- Short-term forecasts
- Transport predictions

M. Serra & G. Haller, Objective Eulerian Coherent Structures, Chaos, (2016)
M. Serra & G. Haller, Forecasting Long-Lived Lagrangian Vortices from their Objective Eulerian Footprints, J. Fluid Mech., (2017)

Parabolic OECSs in the ocean (jet-type structures)

 $\dot{x} \approx \nabla^{\perp} h(x,t); \ h(x,t) =$ sea-surface height at x at time t.

 $\begin{array}{ccc}t & t+\tau\\ & F_t^{t+\tau}\end{array}$

- Short-term pathways for material transport
- No clear signature in the streamline geometry

Where do particles go over short time ? (classic method)

 $\dot{x} \approx \nabla^{\perp} h(x,t); h(x,t) =$ sea-surface height at x at time t.

M. Serra & G. Haller, Objective Eulerian Coherent Structures, Chaos, (2016)

Where do particles go over short time ? (Hyperbolic OECSs)

 $\dot{x} \approx \nabla^{\perp} h(x,t); h(x,t) =$ sea-surface height at x at time t.

Hyp. Attracting OECSs:

- The instantaneously most attracting material curves in the flow
- No signature in the streamline topology

M. Serra & G. Haller, Objective Eulerian Coherent Structures, Chaos, (2016)

Where do particles go over short time ?

ODE for passive tracers:

 $\dot{x} = v(x, t)$

ODE for non-passive tracers:

$$\dot{\tilde{x}} = v(\tilde{x}, t) + \epsilon g(\tilde{x}, t), \quad 0 < \epsilon \ll 1$$

$$\begin{array}{ll} x, \tilde{x} \in U \subset \mathbb{R}^2 \\ < 1 & t \in [a, b], \ v, g \in \mathcal{C}^k, \ k > 1 \end{array}$$

Goal:

Find features of v(x,t) which impact $\tilde{x}(\tilde{x}_0,t,t_2)$

A real-life example:

Joint Project with: MIT WHOI

- Sub-mesoscale velocity field from High-Frequency Radar
- Drifter positions from experiment

(Anthony Kirincich, WHOI) (Irina Rypina, WHOI)

Where do particles go over short time ? (Hyperbolic OECSs)

- Sub-mesoscale velocity field from High-Frequency Radar (Anthony Kirincich, WHOI)
- **Drifter positions from experiment** (Irina Rypina, WHOI)
- OECSs attracts non-passive objects
- No signature in the instantaneous streamlines

M. Serra, P. Sathe, I. Rypina, A. Kirincich, T. Peacock, P. Lermaseux & G. Haller, (in preparation)

Elliptic LCSs in the atmosphere (Lagrangian vortices)

Dec. 2013 - Jan. 2014

Material evolution of the polar vortex edge

Is it the polar vortex edge ?

M. Serra, P. Sathe, F. Beron-Vera & G. Haller, <u>Uncovering the edge of the Polar Vortex</u>, submitted, (2017)

Conclusions

- Short-term skeleton of the flow
- Time scales free
- Computable at any time instant

References:

M. Serra & G. Haller, Objective Eulerian Coherent Structures, Chaos, (2016)

M. Serra & G. Haller, Forecasting Long-Lived Lagrangian Vortices from their Objective Eulerian Footprints, J. Fluid Mech., (2017)

M. Serra & G. Haller, Efficient Computation of Null Geodesics with Applications to Coherent Vortex Detection, Proc. Roy. Soc. A, (2017)

M. Serra, P. Sathe, F. Beron-Vera & G. Haller, <u>Uncovering the edge of the Polar Vortex</u>, submitted, (2017)

