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“Technology, in common with many other activities, tends toward avoidance of risks by investors.
Uncertainty is ruled out if possible. People generally prefer the predictable. Few recognize how

destructive this can be, how it imposes severe limits on variability and thus makes whole

populations fatally vuinerable to the shocking ways our universe can throw the dice.”

Frank Herbert ( Heretics of Dune)




Main Question

Can we, to some degree, turn a scientific problem
into a UQ problem and, to some degree, solve it as
such in an automated fashion using techniques
developed to deal with missing information in
epistemic and model uncertainty?




Example Problem: Find a method for solving (1)
as fast as possible to a given accuracy
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Multigrid Methods
Multigrid: [Fedorenko. 1961. Brandt. 1973, Hackbusch, 1978
Multiresolution/Wavelet based methods
Brewster and Bevlkin. 1995, Bevlkin and Coult. 1998, Averbuch et al., 1998
 Linear complexity with smooth coefficients

Problem Severely affected by lack of smoothness

Robust/Algebraic multigrid

VMandel er al.. 1999 Wan-Chan-Smith. [999. X1 and Zikatanov. 2004. X1 and
Zhu. 2008 . Ruge-Stiithen. 1987

« Some degree of robustness but problem
remains open with rough coefficients

Why? Interpolation operators are unknown

Don’'t know how to bridge scales with rough
coefficients!




Low Rank Matrix Decomposition methods

Fast Multipole Method: [Greengard and Rokhlin, 1987
[Tierarchical Matrix Method: [[Tackbusch et al.. 2002
‘Bebendorl. 2008]:

NIn*T N complexity.




Common theme between these methods

Their process of discovery is based on intuition,
brilliant insight, and guesswork




Answer: Yes by identifying an underlying information game

and finding an optimal strategy for playing the game
——

Identify game

Owhadi 2015. Multi-grid with rough coefficients
and Multiresolution PDI decomposition from
Hierarchical Information Games. arXiv:1503.03467

Play game

Resulting method: |V In” V complexity

This is a theorem




[ - div(aVu) = g in (L.
Resulting method: i u = () on 9.
(O -wVe,w?s, -5, WM s,

< U, X >ai= [,(V¥)TaVx =0 for (v,x) € W x W), 4 #

Theorem Tor v € 5%

Cl < |v]|a < Co
2k 1 div(aVo)flp2q) — 2k

l[rllﬁ = W = fQ(Vr]TaVz'

Looks like an eigenspace decomposition




w'*) = I E. sol. of PDE in 20'*
('an be computed 111dependenlly

%). Stiffness matrix of PDE in 25%)

Amax (B*)
Theorem m < C

—¥

Just relax in 20%) to find w'®

Quacks like an eigenspace decomposition




Multiresolution decomposition of solution space

Solve time-discretized wave equation (1mplicit time steps)
. . . - ’ ‘) r o
with rough coefficients in O(N In® N )-complexity

Swims like an eigenspace decomposition




U: F.I5. space of II§(Q) of dim. N

Theorem The decomposition

¥ =m0 g, W2 g, ..o, WH)

(Can be performed and stored n

[O(N h12 N) ()p(?rati()ns]

Doesn’t have the complexity of an eigenspace decomposition




Basis functions look like and behave like wavelets:
Localized and can be used to compress the operator
and locally analyze the solution space




Identify underlying u = (0 on .

Discovery process { —div(aVu) = g in €.
information game i 3

Measurement functions: (bl givi @y (bm = L2 (Q)

= Lz(Q) Sees [Q U(D]_, IR fg u(bm
lgllr2) <1 Chooses u™ € L*(Q)
Max\ N ’/ m:Tu
‘W—u*

Chooses

L2(Q)



Deterministic zero sum game

Player B
P 3

Player A
B __ Player A's payoff

Player A & B both have a blue and a red marble
At the same time, they show each other a marble

How should A & B play the (repeated) game?




Optimal strategies Game theory
are mixed strategies

Player B

Optimal way to

play is at random 9@ ol - {q
p D John Von Neumann

Player A

l-pe
A’s expected payoll John Nash
=3pqg+ (1 —p)(1—q)—2p(1l—q)—2q(1—p)

3q + p(8q — 3) 1 = 2
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Chooses

g < L2(D) Sees Jo, UoT... .. o UOm
% o e 3
gl 2o < 1 Chooses u* € L=(Q)
*
u—u*|, .,
H L=(£2)

Continuous game but as in decision theory

under compactness it can be approximated
by a finite game

Abraham Wald

The best strategy for A is to play at random

Player’s B best strategy live
in the Bayesian class of estimators




Player B’s class of mixed strategies

Pretend that player A is choosing g at random

ge L*(Q) <=y &: Random field

1 - n O Y '
! —div(aVu) = g m . | | { —div(aVrv) =€ 1n Q.

-- =9 0e v =0 on D9,
Player B’s bet
u*(z) :=E[v(z)] [, v(y)oi(y) dy = [, uly)oi(y) dy. 7i]
Player’s B optimal strategy?

Plaver B's best bet? <4mmd min max problem
over distribution of &




Computational efficiency = |¢ ~ A/((). ]
3

Elementary gambles form deterministic
basis functions for player’s B bet

Theorem 3
u*(2) = 3iL, vilx) Jo uly)oily) dy
Gamblets

;: Elementary gambles/bets
Player 3’s bet if fsz uo; = 6,

Vi T) = e N (0. 1-|| \fn (y)o;(y)dy = 0;;. j ¢ =L o o m}




What are these gamblets? Dep end on

e |: Covariance function of & (plaver’s B decision)

] (Og)m

[}

- ‘Owhadi. 2014]
L w arXiv: [ 106.6668

.+ Measurements functions (rules of the game)

a=[; e .. Polyharmonic splines
Harder-Desmarais. 1972 Duchon 1976. 1977.1978|

a; ; € L°>°(()) ey v;: Rough Polyharmonic splines
'Owhadi-Zhang-Berlyand 2013




What is player’s B best strategy?
What is player’s B best choice for

I(z,y) =E[¢(z)é(y)] 2

- = Jo &(@)f(x) dz ~ N(0. || £[|3)

|13 = ln(V/) aV [

L=— dlv(a,V-)

Why? &= See algebraic generalization




The recovery is optimal (Galerkin projection)

Theorem [T — [ then

u™(x) is the I.E. solution of (1) in span{L " 0;[i =1.....

ju—u™|lp = inft..*Espan{ﬁﬂoi:iE{l ..... m}} [P

(1)

L =

—div(aV-)
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—div(aVu)

=T
0.
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Optimal variational properties

Theorem
m e » .
> i, wi¥; minimizes ||¥|q
over all ¥ such that |, 0;0 =w; for j=1,..., m

Variational characterization

Theorem ;: Unique minimizer of

( - - -
Ninimize Ul a

Subject to ¥ € Hg(Q) and [, 0,9 =0d;;, j=1,..., m

\




Selection of measurement functions

Example [ndicator functions of a
Partition of €2 of resolution H

Theorem HU o U*HG s )\nn.{f(a,) HQHLz(Q)




Elementary gamble

i

(1)

Your best bet on the value of u

orven the mformation that

J_ %=1 and j_ =0 for 7 352
) '.}

—div(aVu) = g. 0
u=1[0. e Tj
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Localization of the 'Q'
computation of gamblets 0 | 3

I o . . . "
£ Minimizer of p=:
-a [ 1

{\Tinirniz# t9|| o ‘ %, .--"'"1"'-.

Subject Lo w'e n:_‘;'i S: ) and J_, Qf & "h--_- |
for 73 € S- sEEiEziiiiaE

No loss ol accuracy il

localization ~ H In ﬁ

ute(x) = Y 0 (@) [1) u(y)oi(y) dy
Theorem I[r>(C'Hln+

lu — e, <

HHU“I 2(Q))

e JAH‘I n ('r




Formulation of the hierarchical game




Hierarchy of nested Measurement functions ' )
(k) : :
o;. ;. withke{1,...,q}
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.




In the discrete setting simply aggregate elements
(as in algebraic multigrid)




 —div(aVu) = g in Q.

Chooses

Formulation of the hierarchy of games

u =0 on I,

g € L*(Q)

Sees {fQ
19llL2(0) £ 1

uw and { |, ud)“

uq.bgk), i € Iy}

Must predict

e =y rmy



Player B's best strategy E~N(0.L)

( . .
< —div(aVu) =g in £, —div(aVv) =& in Q.
n =0 on 2, v =0 on df,
Player B’s bets

=T . R . [ K) - o'
‘ (¥l () = E|v(x) Jo vly)o; 'iyidg-‘lﬂ ulylo; (y)dy. J.i--l

The sequence of approximations form a martingale under
the mixed strategy emerging from the game

Theorem JFi C fg‘_|_1




Accuracy of the recovery

Theorem H“ - “(k)Hu, & \ £ HQHLL’(Q)

min (G)

. k
Hk — Imax; cllalll(T; ))

«- . k
@E“ =1_w) dmm(q( )) il By




In a discrete setting the last step of the game recovers
the solution to numerical precision

Ut
i) g

log,

logyg —




Gamblets Elementary gambles form a hierarchy of deterministic
basis functions for player’s B hierarchy of bets

Theorem u®) (1) = Zi L.‘fm(-f) J“ ”,(!/)c)i,k-)(-_,/) dy

(k) 3 / -
v: ' Elementary gambles/bets at resolution Hj =

)—k

I.IL.I v | | b 'L'J . - i :
W (&) == .L.t'(.i‘]‘ Jrz U\Y)o; (y) dy = 0i,j+ J € lx;J

(1) 3;

v
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Gamblets are nested

Theorem Vi, i Vi

gk c g+ <7

v (z)=X;

) SLlk+1 %) l'J

i




Interpolation/2rolongation operator

o) 3 ~ (fe=—1) . » PRI (f - - :
R =L [oe()o]  (y) dy| [, v(y)ey (y) dy = dis. L ¢ Ly

l.]

9| Your best bet on the value ol f (k+1) U
p ‘_j

oven the nformation that

- = 0 forl+#1i

J_oou=1and |




At this stage you can finish with
classical multigrid

But we want multiresolution decomposition




Elementary gamble

(k) Your best bet on the value of u

X

oven the mmformation that

‘L_:R-} i = l f‘?‘: Ky U = —]_ a]_]_(‘]_ f’r}h " f Pe— 0 f(')]f J 7& ,










Multiresolution decomposition of the solution space
R = span{wgk)_. i € Iy }

k) . —bpa,n{x(“, 3

25 ¥ Orthogonal complement of B m Gk
with respect to < ¥, x >4:= .Isz(V’-' )T aVx




Multiresolution decomposition of the solution
Theorem

uF ) — (k) = F E. sol. of PDE in 295(k+1)

0.03 b!" —

Subband solutions u* L) —

can be computed independently

(k)




Uniformly bounded condition numbers

(k) /., (k) (k)
A 5 —<‘~f Y; >a
Theorem

AI'J‘.'lEII'iZ (B{ *) )

% S S ol )
/\min(B{M) =

>

Just relax!
In v € W)
to get
uh) —aq

1E{k—l}




Coefficients of the solution in the gamblet basis




Operator Compression

Gamblets behave like wavelets but they are adapted to the
PDE and can compress its solution space

(‘ompression ratio = 105
Fnergy norm reiative error — (.07

Gamblet compression

=
Throw 99% of the coefficients



Fast gamblet transform IO(__\" In? N) complexity

AR) = (R(kk+1))T p(k+1) R(k.k+1)

Nesting

Level(k) gamblets and stiffness matrices can be computed
from level(k+1) gamblets and stiffness matrices

Well conditioned linear systems

Underlying linear systems have uniformly bounded
condition numbers

o

Il|rI«‘I | | . ';I;ﬁ'--] - X -,;-.‘—1- T , N | - % {
v, s _E_,;'('i_-' X ; ( (k+1).x =t/3l,;( 1 ) 1ZLL 1

keel), K==L

Localization

The nested computation can be localized without
compromising accuracy or condition numbers




Theorem

s k) (k) . o
Localizing (v;" )i . and (\, )i to subdomains of size

2 (_"HA.. ].:[]_:3 # - (:'U]_l(l. No (HIL‘I ]ill') S C-

> CIi(ln" - +Ini) mp

Hu - ”I. 1).lnc Y T‘?—l (”ﬂ(ﬂ-—i-l ) loc e “{L‘.I.It‘l(‘.)H < C

Lwk—]

Theorem
The number of operations to achieve

accuracy € is ~ N(In* N +Ini)ln?

compe¥ lo(N1n? V)
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Generalization to linear systems of equations
Identification of the optimal prior/mixed strategy in that setting

Approximate solution x of
b A: Known n X n symmetric
4 1:1: — positive delinite matrix

b: Unknown clement of R"
Based on the mmformation that

(b e = y ®: Known m x n

rank m matrix (m < n)

bTb < ]- y: Known element of R™




Game theoretic formulation

Az =0
... PlayerB
Chooses = i
b€ R" g

hooses x*
bIh <1 C

.-"/
\ % __f'-.-l-..
%\ v n

Py

|z —z*||,
Zero sum game

Best way to play: Mixed strategy



Player B’s mixed strategy

§ ~N(0,Q)

Player’s B bet

" =E[X\®X = y] = Py




How is this related to model uncertainty?

Motivations for developing this kind of framework



Solving PDEs: Two centuries ago

A. L. Cauchy

(1789-1857)
& S. D. Poisson

(1781-1840)




Solving PDEs: Now.
Au=f

‘l

. —ae
?




Find the best climate model now

Find a 95% interval of confidence on average
global temperatures in 50 years

Problem

e Incomplete mformation
on underlving processes
e [Limited computation capability

e You don't know P

e You have limited data




Can a machine compute the best climate model?

2 Major problems

 Even if you have access to the most
powerful computer in the universe, what

do you compute?
* The space of models is infinite and calculus

on a computer is discrete and finite.
Need a framework to turn this problem into
a well posed one.

Need a calculus to manipulate infinite
dimensional information structures




Framework: Game/Decision Theory

Chooses candidate Sees data
o Chooses model

L L I R i ]

m— = ey
-




Game theory and statistical decision theory

= 'i I_ i ]
John Von Neumann John Nash Abraham Wald
The best strategy is to play at random

Obtained by finding the worst prior in
the Bayesian class of estimators

Leads to optimization problems over measures
over spaces of measures and functions
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