Coherent Structures in Run-and-Tumble Processes

Arnd Scheel, University of Minnesota

joint work with Angela Stevens, Universität Münster

Snowbird, May 2017

Motivation - myxobacteria

Myxobacteria: interesting collective behavior!

Formation of fruiting bodies high density, low nutrient

Motivation - myxobacteria

Myxobacteria: interesting collective behavior!

Formation of fruiting bodies high density, low nutrient

Rippling motion for "efficient depletion" of food source

Motivation — Guilding blocks

Here: explain rippling!

O.A. Igoshin, R. Welch, D. Kaiser, and G. Oster. Waves and aggregation patterns in myxobacteria. Proc. Nat. Acad. Sci. 101 (2004), 4256-4261.

Motivation — building blocks

Here: explain rippling!

Phenomena: explain wavenumber selection, apparent "standing waves"!
O.A. Igoshin, R. Welch, D. Kaiser, and G. Oster. Waves and aggregation patterns in myxobacteria. Proc. Nat. Acad. Sci. 101 (2004), 4256-4261.

Motivation — building blocks

Here: explain rippling!

Phenomena: explain wavenumber selection, apparent "standing waves"!

Modeling: what are the "simplest" mechanisms that explain wavenumber selection here (compare Turing!)?
O.A. Igoshin, R. Welch, D. Kaiser, and G. Oster. Waves and aggregation patterns in myxobacteria. Proc. Nat. Acad. Sci. 101 (2004), 4256-4261.

Modeling: minimal ingredients "run" and "tumble"
Run: Populations of bacteria moving left and right, respectively:

$$
u_{t}=u_{x}, \quad v_{t}=-v_{x}
$$

Modeling: minimal ingredients "run" and "tumble"
Run: Populations of bacteria moving left and right, respectively:

$$
u_{t}=u_{x}, \quad v_{t}=-v_{x}
$$

Tumble: Left-running agents turn with rate depending on overall concentration $r(u, v)$; reflection symmetry gives

$$
u_{t}=-r(u, v)+r(v, u), \quad v_{t}=r(u, v)-r(v, u)
$$

Modeling: minimal ingredients "run" and "tumble"

Run: Populations of bacteria moving left and right, respectively:

$$
u_{t}=u_{x}, \quad v_{t}=-v_{x}
$$

Tumble: Left-running agents turn with rate depending on overall concentration $r(u, v)$; reflection symmetry gives

$$
u_{t}=-r(u, v)+r(v, u), \quad v_{t}=r(u, v)-r(v, u)
$$

Experiments:

- self-propelled motion
- ripples \perp motion
- "C-signal" transmitted upon contact \Rightarrow reversal

Modeling: minimal ingredients "run" and "tumble"

Run: Populations of bacteria moving left and right, respectively:

$$
u_{t}=u_{x}, \quad v_{t}=-v_{x}
$$

Tumble: Left-running agents turn with rate depending on overall concentration $r(u, v)$; reflection symmetry gives

$$
u_{t}=-r(u, v)+r(v, u), \quad v_{t}=r(u, v)-r(v, u)
$$

Experiments:

- self-propelled motion
- ripples \perp motion
- "C-signal" transmitted upon contact \Rightarrow reversal

Models:

- internal clocks, delays
- struct' population models
[Bonilla PRE 93(2016), 012412]
[Börner Phys. Biol. 3(2006), 138]
[Igoshin PNAS 101(2004) 4256]
[Sliusarenko PNAS 103(2006), 1534]

What can we explain and what not?

Main results: our model explains

- \checkmark rippling patterns
- \times wavenumber selection from white noise
- \checkmark wavenumber selection from shot noise or growth

What can we explain and what not?

Main results: our model explains

- \checkmark rippling patterns
- \times wavenumber selection from white noise
- \checkmark wavenumber selection from shot noise or growth

What's missing

- test hypotheses
- two-dimensional versions
- nonlinear analysis, stability,...

Analysis in three chapters

I) equilibria and stablity
II) coherent structures
III) pointwise instability

Kinetics - nonlinear tumbling

Example: Turning rate increases with collisions in sigmoidal fashion

$$
r(u, v)=u \cdot\left(1+\frac{v^{2}}{1+\gamma v^{2}}\right)
$$

Phase portraits for $\gamma=0.122,0.115,0.07,0.021$

Kinetics - nonlinear tumbling

Example: Turning rate increases with collisions in sigmoidal fashion

$$
r(u, v)=u \cdot\left(1+\frac{v^{2}}{1+\gamma v^{2}}\right)
$$

Phase portraits for $\gamma=0.122,0.115,0.07,0.021$

Other kinetics:

$$
u \cdot\left(1+\frac{v^{2}}{1+\gamma(u+v)^{2}}\right)
$$

$$
u \cdot\left(1+\frac{v^{3}}{1+\gamma v^{2}}\right)
$$

Linear stability

Stability depends on normal vector (n_{1}, n_{2}) of equilibrium curve:

Fastest-growing mode $k=0, \infty$
\Rightarrow No "Turing"
finite wavenum-
$\lambda_{ \pm}(k)=\frac{1}{2}\left(n_{1}-n_{2} \pm \sqrt{\left(n_{1}-n_{2}\right)^{2}+4 i k\left(n_{1}+n_{2}+i k\right)}\right)$ ber selection!

Many questions... Here: "standing" waves!

$$
\begin{aligned}
& u_{t}=+u_{x}-r(u, v)+r(v, u) \\
& v_{t}=-v_{x}+r(u, v)-r(v, u)
\end{aligned}
$$

Look for sol's $u_{0}(x+t), v_{0}(x-t)$

$$
\Longleftrightarrow r\left(u_{0}, v_{0}\right)=r\left(v_{0}, u_{0}\right)
$$

E.g. $u \in\left\{u_{-}, u_{+}\right\}, v \in\left\{v_{-}, v_{+}\right\}$,

$r\left(u_{ \pm}, v_{ \pm}\right)=r\left(v_{ \pm}, u_{ \pm}\right)$

Plethora of waves with jumps! Stability...

Pointwise instabilities

- linearization at constant state can be solved "explicitly"

$$
U_{t}=\mathcal{L} U \Rightarrow U(t, x)=\frac{1}{2 \pi i} \int_{\Gamma} e^{\lambda t} \int_{y} G_{\lambda}(x-y) U(0, y) d y d \lambda
$$

Pointwise instabilities

- linearization at constant state can be solved "explicitly"

$$
U_{t}=\mathcal{L} U \Rightarrow U(t, x)=\frac{1}{2 \pi i} \int_{\Gamma} e^{\lambda t} \int_{y} G_{\lambda}(x-y) U(0, y) d y d \lambda
$$

- deform 「 such that $\mathcal{R e} \lambda \rightarrow$ min, but $G_{\lambda}(\cdot)$ analytic
\Rightarrow "pointwise" singularities of $G_{\lambda}(x) \sim$ exp' growth rates

Pointwise instabilities

- linearization at constant state can be solved "explicitly"

$$
U_{t}=\mathcal{L} U \Rightarrow U(t, x)=\frac{1}{2 \pi i} \int_{\Gamma} e^{\lambda t} \int_{y} G_{\lambda}(x-y) U(0, y) d y d \lambda
$$

- deform 「 such that $\mathcal{R e} \lambda \rightarrow$ min, but $G_{\lambda}(\cdot)$ analytic \Rightarrow "pointwise" singularities of $G_{\lambda}(x) \sim$ exp' growth rates
- pointwise singularities generically from pinched double roots: Ansatz $U(t, x)=U_{0} e^{\lambda t+\nu x}$ gives dispersion relation $d(\lambda, \nu)$

Pointwise instabilities

- linearization at constant state can be solved "explicitly"

$$
U_{t}=\mathcal{L} U \Rightarrow U(t, x)=\frac{1}{2 \pi i} \int_{\Gamma} e^{\lambda t} \int_{y} G_{\lambda}(x-y) U(0, y) d y d \lambda
$$

- deform 「 such that $\mathcal{R e} \lambda \rightarrow$ min, but $G_{\lambda}(\cdot)$ analytic \Rightarrow "pointwise" singularities of $G_{\lambda}(x) \sim$ exp' growth rates
- pointwise singularities generically from pinched double roots:

Ansatz $U(t, x)=U_{0} e^{\lambda t+\nu x}$ gives dispersion relation $d(\lambda, \nu)$

- pinched double roots (λ, ν) solve

$$
d(\lambda, \nu)=0, \quad \partial_{\nu} d(\lambda, \nu)=0, \quad \nu_{ \pm}(\lambda) \rightarrow \pm \infty
$$

Spreading speeds and wavenumber selection

Ptwise instabilities/pinched dble roots depend on coordinate frame!

$$
U(t, x) \rightarrow U(t, x-c t) \Rightarrow d(\lambda, \nu) \rightarrow d_{c}(\lambda, \nu)=d(\lambda-c \nu, \nu)
$$

Spreading speeds and wavenumber selection

Ptwise instabilities/pinched dble roots depend on coordinate frame!

$$
U(t, x) \rightarrow U(t, x-c t) \Rightarrow d(\lambda, \nu) \rightarrow d_{c}(\lambda, \nu)=d(\lambda-c \nu, \nu)
$$

- Spreading speed: $\sup \{c \mid \operatorname{Re} \lambda>0, \lambda$ pinched dble root $\}$

Spreading speeds and wavenumber selection

Ptwise instabilities/pinched dble roots depend on coordinate frame!

$$
U(t, x) \rightarrow U(t, x-c t) \Rightarrow d(\lambda, \nu) \rightarrow d_{c}(\lambda, \nu)=d(\lambda-c \nu, \nu)
$$

- Spreading speed: $\sup \{c \mid \operatorname{Re} \lambda>0, \lambda$ pinched dble root $\}$
- $\lambda=i \omega$ gives frequency, c spreading speed
\Rightarrow wavenumber from nonlinear dispersion relation. . .

Finding pinched double roots

A calculation with $n_{1 / 2}=\partial_{u / v}(-r(u, v)+r(v, u))$, gives

$$
\begin{aligned}
d_{c}(\lambda, \nu) & =(\lambda-c \nu)^{2}-(\lambda-c \nu)\left(n_{1}-n_{2}\right)-\left(n_{1}+n_{2}\right) \nu-\nu^{2}, \\
\partial_{\nu} d_{c}(\lambda, \nu) & =-2 c \lambda-\left(n_{1}+n_{2}\right)+c\left(n_{1}-n_{2}\right)-2 \nu+2 c^{2} \nu,
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda_{*} & =\frac{1}{2}\left(n_{1}-n_{2}-c\left(n_{1}+n_{2}\right) \pm 2 \sqrt{-n_{1} n_{2}\left(1-c^{2}\right)}\right) \\
\nu_{*} & =\frac{1}{2\left(1-c^{2}\right)}\left(\left(n_{1}+n_{2}\right)\left(c^{2}-1\right) \mp 2 c \sqrt{-n_{1} n_{2}\left(1-c^{2}\right)}\right) .
\end{aligned}
$$

Pinching implies $|c|<1, \omega_{*}=2 \frac{n_{1} n_{2}}{n_{1}+n_{2}}$,

$$
k_{*}=n_{2} \text { when } n_{1}, n_{2}>0, \quad k_{*}=-n_{1} \text { when } n_{1}, n_{2}<0 .
$$

Perturbing asymmetric states locally

Perturbing asymmetric states - shot vs white noise

Perturbing symmetric states

Spikes and blowup

Include small diffusive term

$$
\begin{aligned}
& u_{t}=\varepsilon u_{x x}+u_{x}-r(u, v)+r(v, u) \\
& v_{t}=\varepsilon v_{x x}-u_{x}+r(u, v)-r(v, u)
\end{aligned}
$$

Bifurcation of family stationary spikes from $u=v=u_{*}$!

- unstable at small amplitude
- $\varepsilon \rightarrow 0 \Rightarrow$ Dirac- δ singularities
- stability for certain $r(u, v)$ for large amplitude \Rightarrow blowup, cluster formation, fruiting?

Diffusion and conversion

Very, very similar phenomena in reaction-diffusion

$$
\begin{aligned}
& u_{t}=u_{x x}-f(u, v) \\
& v_{t}=f(u, v)
\end{aligned}
$$

white noise:

shot noise:
$\mathrm{a}=0.4, \gamma=0.1, \alpha=0.015, \delta=0.1$

Kotzagiannidis et al., Stable pattern selection through invasion fronts in closed two-species reaction-diffusion systems, RIMS Kokyuroku Bessatsu B31 (2012)

Summary and open questions

- wavenumber selection - shot noise vs white noise

Summary and open questions

- wavenumber selection - shot noise vs white noise
- perturbation from symmetric states - how do we get to asymmetric states?

Summary and open questions

- wavenumber selection - shot noise vs white noise
- perturbation from symmetric states - how do we get to asymmetric states?
- validation - compare experiments with mutants!

Summary and open questions

- wavenumber selection - shot noise vs white noise
- perturbation from symmetric states - how do we get to asymmetric states?
- validation - compare experiments with mutants!
- blowup!? transition to fruiting?

Summary and open questions

- wavenumber selection - shot noise vs white noise
- perturbation from symmetric states - how do we get to asymmetric states?
- validation - compare experiments with mutants!
- blowup!? transition to fruiting?

Thank you!

