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Motivation

The (unknown) f is a (vectorized) 2D or 3D image of, for example:

pixel intensity

hydraulic or electric conductivity

electrical resistivity

Compton scatter coefficient

photoelectric absorption

optical absorption

and M represents the appropriate (linear or nonlinear) model map.
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Motivation

Forward problem: m = M(f) + unknown noise.

Inverse problem: recovery of vectorized image of the unknown
f ∈ Rm×n(×k) given the model M and noisy data m.

min
f∈Rm×n×k

‖m−M(f)‖2 + regularization on f; + constraints on f

Regularization, often quite sophisticated, used to

Damp effects noise in the data

Deals with the lack of, or (near) redundancy in, data

Enforce a priori knowledge about the solution

Evaluations M(f) often present a huge computational bottleneck for
non-linear M, and are non-trivial for many linear models as well.
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Motivation - Examples - Linear
Deblurring1, M(f) = Af from discretized convolutional model.

1Semerci, K., Miller, “An Adaptive Inner-Outer Iterative Regularization Method for
Edge Recovery”, ICIAM presentation 2015.
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Motivation - Examples - Linear

Recovering energy-dependent attenuation coefficients2

Figure: Left: 85keV phantom; Middle: FBP, Right: with TNN regularization

2Semerci, Hao, K., Miller IEEE TIP, 2014
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Motivation – Examples – Nonlinear

Recovery of hydraulic conductivity. Evaluation of M(p) requires multiple
PDE solves and limited data.

3;

3Images from Saibaba, Bakhos, Kitanidis, SISC, 2013
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Motivation - Examples - Nonlinear
Invert for saturation, combining ERT and hydrologic measurement data4.

Figure: Left: Model, with source/detector locations; Right top: truth; Bottom: a
PaLS joint reconstruction.

4Aghasi, et. al., Inverse Problems 29 (2013).
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Motivation - Examples - Nonlinear

Invert for absorption coefficient in breast tissue, given limited, discrete
measurements of photon flux, possibly at mulitple wavelengths5.

5Images from Saibaba, et al., SISC 2015.
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General Inverse Problem Formulation

Recover vectorized image of the unknown f ∈ Rm×n(×k)

min
f∈Rm×n×k

‖m−M(f)‖2 + λ2Γ(f)

Practical Considerations

Often data limited; voxel based inversion realistic?

Choice of regularization term(s)

Choice of parameter(s)

Evaluation of M(fk) and Jacobian during optimization may require
solution of many, large scale forward model solves (discretized PDEs),
so a single optimization step is expensive
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Many Interesting Subproblems for the CS&E Community

Subproblems requiring expertise across CS&E disciplines:

Image representation
I A new basis or learn a dictionary
I Level Set, parametric level sets, or other shape based

Regularization (e.g.)
I Enforce sparsity (in right representation)
I Geometric constraints or multiway data constraints (tensors)
I Regularization parameter selection (learning)

Approximate forward model
I Krylov subspace methods, recycling, preconditioning
I Multigrid
I Reduced order models and randomized approaches

Optimization
I Sophisticated algorithms tailored to inverse problems

Uncertainty quantification
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Main Ingredients

Multi-pronged approach to solving reconstruction problems:

1 Determine a “natural” model for the image space that provides
robustness to noise. Two options:

I Find dictionary W , f = Wp, solve for p
I Low order parameterization of image space, f = f(p), solve for p.

2 Determine surrogate forward operator or model so function/Jacobian
evaluations becomes less costly. Two options:

I Randomized techniques
I Reduced order modeling
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Priors in the Form of Training Images

Assume prior information (feature-based) available from training images6.

Grains Geostatistical Peppers

6The grains simulation is by Post Doc. Jakob S. Jorgensen, DTU. The Geostatistical
image is by Ph.D Knud S. Cordua. The Peppers photo is courtesy of Prof. Samuli
Siltanen, University of Helsinki.
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Two-step Matrix-based Dictionary Learning Approach

Generate t, p × r subimages from training image

Vectorize ea. subimage, form matrix Y ∈ Rpr×t

Compute a NMF Y ≈ DH, where D has s � t columns.

Construct “global matrix” W from D.

Using f ≈Wp, solve

min
p≥0
‖m−M(Wp)‖2

2 + λR(f) + µG (p)

See, for example, Soltani, Andersen, and Hansen, “Tomographic image
reconstruction using training images,” J. Comp. Appl. Math., 313 (2017)
and references therein.
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Dictionary Image models

Forces the solution to be comprised of desired features

Some regularization is built in to the image model; optimization now
over coefficients

Additional regularization (non-negativity, smoothness) also applied

Generalization to tensors: Soltani, K., Hansen, BIT, 2016.

7

7
Left: M Honarkhah, ”Stochastic Simulation of patterns using distance-based pattern modeling” Ph.D thesis, Standford

University, 2011. Right: Anika Rounds, M.S. Thesis, Tufts University, 2014.
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Tensor Patch Dictionary Results8

Figure: Left: FBP; Middle: Tikhonov; Right: Tensor Dictionary

8Soltani, K., Hansen, “A tensor-based dictionary learning approach to tomographic
image reconstruction, ” BIT, 2016.
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Image Parameterization: Breast Tissue Imaging with DOT

Breast tissue made up of adipose, fibroglandular, tumor. Inverting for
every voxel value is unneccesary.

Figure: Ben Brooksby, et. al, PNAS 2006 103 (23) 8828-8833
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Shape-based Approach

Simpliest Model: Model unknown f (x) as piecewise continuous.

χD(x) =

{
1 x ∈ D
0 x ∈ Ω\D.

In a continuous setting, the unknown property f (x) can be defined over Ω

f (x) = fi (x)χD(x) + fo(x)(1− χD(x))

Goal: find ∂D (and parameters defining fi , fo).

Traditional level sets (e.g. Santosa ‘96), could be used to specify ∂D.
Practical implementation highly non-trivial9.

9van den Doel et al, J. of Sci. Comp. 2010; van den Doel & Ascher, SISC 2012
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Parametric Level Sets (PaLS)10

Let φ function of m-length parameter vector p AND x:

φ(x,p) =

m0∑
i=1

αiψi (x)

p contains αi & parameters defining i th function.
——————————————————————————————–
Let ψ : R+ → R denote a sufficiently smooth CSRBF.

φ(x,p) :=

m0∑
j=1

αjψ(‖βj(x− χj)‖†),

where the χj are the centers, βj are dilation factors and

‖x‖† :=
√
‖x‖2

2 + ν2

Desired parameter vector: p =
[

aT bT χT
x χT

y

]T
.

10Aghasi, K., Miller, SIIMS, 2011.
Misha E. Kilmer (Tufts University) Efficient Reconstruction 2017 19 / 45



Choice of Functions

CSRBFs: Wendland, Cambridge Univ. Press, 2005.
One CSRBF: ψ(r) = (max(0, 1− r))2 (2r + 1); r =

√
x2 + y2. For a list

of other choices, related work, see Aghasi, et al, 2011.
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Optimization Revisited

f (x,p) = fi (x)Hε(φ(x,p)− c) + f0(x) (1− Hε(φ(x,p)− c))

——————————————————————————————–
Assume fi (x) = fi and fo(x) = fo and f(p) the discretization of f (x,p):

min
p
‖m−M(f(p))‖2

Nonlinear LS problem of relatively small dimension.

No additional regularization except stopping criterion (discrepancy).

Use TREGS11 to solve this, proven more efficient than LM or (modified,
regularized) GN.

11de Sturler and K. “A Regularized Gauss-Newton Trust Region Approach to Imaging
in Diffuse Optical Tomography, SISC, 2011
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Motivating Example: Diffuse Optical Tomography
Imaging for absorption coef in tissue illuminated by near infrared light.
Forward model - solve diffusion equation that models photon fluence/flux!

15× 15 array sources & detectors, 32× 32× 21 grid

m0 = 125 (CSRBFs in 5× 5× 5 grid) .05 percent Gaussian noise
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TREGS: 44 Fev, 29 Jev

6 7 8

9 10 11

12 13 14
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Main Ingredients

Multi-pronged approach to solving reconstruction problems:

1 Determine a “natural” model for the image space that provides
robustness to noise. Two options:

I Find dictionary W , f = Wp, solve for p.
I Low order parameterization of image space, f = f(p), solve for p.

2 Determine surrogate forward operator or model so function/Jacobian
evaluations becomes less costly. Two options:

I Structure and Randomized approaches
I Reduced order modeling
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Approximating the Forward Operator - Linear Case

M(f) = Af(p). Singular values decay quickly, dense but “structured” e.g.

Nearly spatially invariant, sums of Kronecker products

Hierarchical low rank blocks

Solution of inverse problem involves products with, or rank-revealing
factorization of, A. Generate approximate (hierarchical) low-rank

approximations using matrix structure12 or via matrix randomization
techniques13 and use these as surrogates14 in the optimization problem.

12See Chung, K, O’Leary, SISC, 37 (2015) and references therein.
13Chaillat and Biros, J. Comput. Phys., 231 (2012).
14Saibaba, K., Miller, Fantini, SISC, 37 (2015).
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Approximating the Forward Model – Nonlinear Case

Evaluating M(p) major computational bottleneck in applications like
hydraulic tomography, DOT.

Function evals involve transfer function evals15:

Ψ(ω; p) = CT︸︷︷︸
ndet×n

( ıω
ν

E + Ã(p)
)−1

︸ ︷︷ ︸
n×n

B︸︷︷︸
n×nsrc

Solve minp ‖m−M(f(p))‖2, where

M(f(p(k))) =

 vec
(
Ψ(ω1,p(k))

)
...

vec
(
Ψ(ω`,p

(k))
)
 .

15O’Connell, et al., SISC 2016
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Reducing Costs of Forward Model Evaluation

Ideas (independent of the image representation!):

1 Randomization to reduce the number of effective measurements and
required model evaluations

2 Model reduction techniques to reduce the cost per evaluation

3 Combined approach
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Stochastic Sources and Detectors

Alternative representation of residual: ‖D−Ψ(0,p(j))‖2
F .

Motivation: Haber, Chung, Hermann, SIOPT, 2012.

Let Ω ∈ Rnsrc×k , k � nsrc be drawn from an appropriate distribution, then

1

k
‖DΩ−Ψ(p)Ω‖2

F

can be used to estimate the cost. Since Ψ(p)Ω = CT
(

Ã(p)−1(BΩ)
)

,

need solve only k , n × n linear systems.

The k columns of BΩ are called the stochastic sources.
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Randomize, then Optimize Approach

Recent work for the DOT problem16 takes this idea further.

Where we need to find (Ã(p))−∗C, we can replace C by k stochastic
detectors CΓ (i.e. Γ is ndet × k, k � ndet).

Compute the solution to the optimization problem using only
stochastic sources and detectors.

This solution largely not sufficient (stagnation).

Add few ‘optimized’ sources & detectors as optimization progresses to
keep only ≈ k solves of the forward and adjoint at each step.

16Sariaydin, de Sturler, K, 2017
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Randomized + Optimized Results17

17From Sariaydin, de Sturler, K, “Randomized approach to nonlinear inversion
combining simultaneous random and optimized sources and detectors” (2017)
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Model Order Reduction

Still requires some FOM solves throughout the whole optimization.

Use a cheaper-to-evaluate approx. Ψr (ω,p) such that

Ψ(ω,p(k)) ≈ Ψr (ω,p(k))

where

Ψ(ω,p) = CT
( ıω
ν

E + Ã(p)
)−1

B︸ ︷︷ ︸
nsrc ,n×n system solves

Ψr (ω,p) = CT
r

( ıω
ν

Er + Ãr (p)
)−1

Br︸ ︷︷ ︸
nsrc ,r×r system solves

Replace simulated data at (ω`,p
(k)) with vec(Ψr (ω`,p

(k))).
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Reduced Order Modeling

Use interpolatory parametric model reduction:

Find Ψr easy to evaluate giving high-fidelity approx to Ψ over
parameters and frequencies of interest

Require the same of ∇pΨr

Use projection matrix V with only r columns to obtain the surrogate
model

E.g. for ω = 0:

Ψr (0; p) = CT
r Ã−1

r (p)Br

with Ãr = VT ÃV︸ ︷︷ ︸
r×r

; Br = VTB; Cr = VTC.
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Construction of V

Construct V to (ideally) cover the entire parameter space of interest

Need to solve some full order model (FOM) systems to find V

Ã(p(k))Xk = B, Ã∗(p(k))Yk = C

Choose pk from initial + optimization steps on the FOM.

Well informed interpolation points & dual use of computations.

Solve K full order model systems, take SVD of
[X0,X1, . . . ,XK ; Y0, . . . ,YK ], use some left singular vectors for V 18

I Computes redundant information (wasted computation)
I Cost of SVD and choice of truncation

18E. de Sturler, et al., SISC 2015
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Global Basis Construction

Recent work for DOT19: Use the information from the full order model
solves to dynamically and directly specify V.

Ã(p(k))Xk = B, Ã∗(p(k))Yk = C

Solve for X0 (Y0).

For fixed k > 0, solve for all RHS using two-level recycled MINRES.
I Some FOM solves must be done

Incrementally update V from the recycle spaces plus augmentation
vectors based on MINRES run.

Efficient, avoids extra solves, SVD computation/truncation.

19O’Connell, et al., SISC, to appear 2017
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Numerical Experiment

DOT example20; invert for the absorption using PaLS for the image model.

Full Order Model

Original System Size:
n = 40,401

Number of Func Evals: 30 ;
Num Jac Evals 15

1,440, Full systems of size n × n

ROM

ROM System Size:
r = 197

Number of Func Evals: 28; Num
Jac Evals 14

187, n × n systems + 1,344 of
size r × r

32 sources and 32 detectors

20O’Connell, et al., SISC, to appear 2017
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Reconstruction Results
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DOT- ROM results with 2 frequencies
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Reconstruction results using data at both 0 and 10 MHz. The FOM
required 82 function evaluations and 49 Jacobian evaluations, the ROM
required 104 function evaluations and 56 Jacobian evaluations. r = 265
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Combining ROMS and Randomization

ROMs reduce the size of the linear systems but not the number of systems
per optimization step, whereas randomization reduces the number of

systems to solve but does not change their size.

Combined, these approaches will be quite powerful!
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Combining ROMS and Randomization

Current work for DOT21

32× 32× 32 (n = 32768)

225 sources (top); 225 detectors (bottom).

27 compactly supported radial basis functions

FOM, all sources and detectors 17550, n × n solves.

ROM from 5 interp points → 2250, n × n solves.

Randomized approach to computing ROM basis, 60 stochastic
sources & detectors ea. 5 interpolation points, leading to 600 large
linear solves

21Sariaydin, et. al; See Tues. PP1, “Computing Reduced Order Models Using
Randomization”
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Combining ROMS and RandomizationNumerical Experiments

Selin Sariaydin (Virginia Tech) Randomization for ROM IS16 17 / 20FOM: 17,500 n × n
ROM, usual: 2,250 n × n, r = 568, 7, 200, r × r solves
ROM, stochastic: 600 n × n, r = 568, 9, 900, r × r solves
Combined approach reduces no. large linear solves by about a factor 30
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Updating of ROMS

Recent work by Munster and de Sturler22 possible to cheaply determine
when FOM solves are needed to refresh the ROM during optimization.

FROM(p(k)) = ‖D−Ψr (p(k))‖F
compared to

FFull(p(k)) = ‖D−Ψ(p(k))‖F estimated by ‖Dw −Ψ(p(k))w‖F

and
Ψ(p(k))w = CT

(
A(p(k))−1(Bw)

)
︸ ︷︷ ︸

1 solve

where w from Rademacher distribution.

22“Nonlinear inversion using parametric model reduction with stochastic error
estimates”, 2017
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Updating of ROMS

n = 40401; 2D DOT PaLS; r = 74; 398 n× n solves and 1120 r × r solves.
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Updating of ROMS

System Size Number Solves

40401 461

74 448

78 640
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Summary and Future Directions

Touched on two main ingredients for producing effective and efficient
algorithms for reconstruction problems.

Image Modeling:
I Enforcing a priori information directly on the image model can make

more robust to noise, may reduce the search space.

Approximating the Forward Model:
I Complementary scientific computing techniques working together have

best chance of significantly improving reconstruction speed while
maintaining accuracy

Related on-going work (Saibaba, K., de Sturler, Miller): Ψ(p) ≈ low rank;
randomized SVD approximation using result of computations equivalent to
using stochastic sources and/or detectors.
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Many Interesting Subproblems Remain

Image representation
I Other machine learning techniques
I Other parametric representations (like PaLS, that are grid independent)

Regularization (e.g.)
I Sparsity or edge enhancing
I Geometric constraints or multiway data constraints (tensors)

Evaluation and approximation of forward model
I Krylov subspace methods, recycling, preconditioning, multigrid
I Other randomized techniques
I Other ROM appoaches – e.g.

F Wed., MS160,
F Fri., MS275, MS302 , includes tensor POD, multiscale approaches

Optimization
I Sophisticated, tailored algorithms – MS160, MS187

Uncertainty quantification and related work
I MS165, MS192; and Fri, MS293 10:25
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