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Well-established theory in the convex setting
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> Important limit case is the Potts model (¢ = 0) [Potts '52] (unsupervised
segmentation, image cartooning, blind deblurring, ...)

> Piecewise smooth approximations [Blake, Zisserman '87], [Geman, Geman '84]

() = min{\, at?}
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> Key computation in most splitting methods is evaluation of proximal mapping

prox, ¢(z) := arg min f(z) + M
T, T ERM 2T

» Often can be efficiently (and globally optimally) evaluated even if f is nonconvex

> Can apply most proximal splitting algorithms “as is” in the nonconvex setting

> The use of nonconvex proximal mappings emerged around = 2009, amongst
many others [Chartrand '09], [Blumensath, Davies '09], [Fornasier, Ward '09], ...

» Remark: many other possibilities exist for nonsmooth nonconvex optimization
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> Motivates adaptive choice of steps with 7, — 0, o — 400
> Possible choice which works extremely well in practice, for v > 0:
1
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k T Tk &/0ks Tht1 = TiOk,
> In convex setting gives O(1/k2) convergence if either F* or G is strongly convex

with modulus v [Chambolle, Pock '11]
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> On recent GPU: =~ 30ms for 640 x 480 color image [Strekalovskiy, Cremers '14]

(— application: real-time video cartooning!)
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1E€EQ 1€
> Furthermore, we propose similar nonconvex generalizations for the total
generalized variation (TGV) [Bredies '10], [Bredies '14]
> Can be efficiently solved using the nonconvex PDHG
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Noisy TGVg TGVE TGVg1 TGV,
oc=0.1 PSNR=28.5 PSNR=28.9 PSNR=29.0 PSNR=29.4

Algorithm works well in practice. Theoretical convergence properties?
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> Theory-practice gap ll: for adaptive step sizes, experiments indicate that the
algorithm converges for general nonconvex energies
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Application: convex non-convex (CNC) models [Parekh, Selesnick '15],
[Lanza, Morigi, Sgallari '16]
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> For K # 1, 0 =1, PDHG can be seen as inexact ADMM on the dual problem
(hasn’t been studied for nonconvex F' to best of our knowledge)

» Local convergence result for nonlinear K [Valkonen '13], can also be used to do
nonconvex regularization [Shekhovtsov, Reinbacher, Graber, Pock '16]
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Thank you for your attention!

thomas.moellenhoff@in.tum.de
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