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Motivation: First-Order Splitting Methods

I Many relevant optimization problems in image processing, computer vision,

machine learning have structured form

min
x∈Rn

G(x) + F (Kx)

I Usually G : Rn → R ∪ {∞} is a data fidelity term and F : Rm → R ∪ {∞} a

regularization term encouraging spatial smoothness, e.g. by some linear gradient

operator K : Rn → Rm

I Trend: employ first-order splitting methods to quickly solve the above up to

modest accuracy

I A popular and versatile algorithm is the primal-dual hybrid-gradient (PDHG)

method [Pock, Cremers, Bischof, Chambolle ’09], [Esser, Zhang, Chan ’10],

[Pock, Chambolle ’11]

I Well-established theory in the convex setting
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Motivation: Nonconvex Regularization

I Popular choice of regularizer are discrete TV-type energies, ϕ : R→ R

F (∇x) =
∑
i∈Ω

ϕ (‖(∇x)i‖)

I Derivative statistics of natural images suggest nonconvex ϕ [Huang, Mumford ’09]

ϕ(t) = tq , q < 1

I Important limit case is the Potts model (q = 0) [Potts ’52] (unsupervised

segmentation, image cartooning, blind deblurring, ...)

I Piecewise smooth approximations [Blake, Zisserman ’87], [Geman, Geman ’84]

ϕ(t) = min{λ, αt2}
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Motivation: Nonconvex Proximal Mappings

I Key computation in most splitting methods is evaluation of proximal mapping

proxτ,f (z) := arg min
x∈Rn

f(x) +
‖x− z‖2

2τ

I Often can be efficiently (and globally optimally) evaluated even if f is nonconvex

I Can apply most proximal splitting algorithms “as is” in the nonconvex setting

I The use of nonconvex proximal mappings emerged around ≈ 2009, amongst

many others [Chartrand ’09], [Blumensath, Davies ’09], [Fornasier, Ward ’09], ...

I Remark: many other possibilities exist for nonsmooth nonconvex optimization
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The Primal-Dual Hybrid Gradient Method (PDHG)

I Idea: introduce variable splitting for constraint z = Kx

min
x,z

G(x) + F (z), s.t. z = Kx

I Add Lagrange multiplier y for linear constraint

max
y

min
x,z

G(x) + F (z) + 〈y,Kx− z〉

I Under convexity assumptions equivalent to

min
x

max
y

G(x)− F ∗(y) + 〈y,Kx〉

I PDHG algorithm performs alternating ascent/descent in y and x, followed by a

subsequent overrelaxation

yk+1 = proxσ,F∗

(
yk + σKx̄k

)
,

xk+1 = proxτ,G

(
xk − τKT yk+1

)
,

x̄k+1 = xk+1 + θ
(
xk+1 − xk

)
.

I Convergence to saddle-point ( x̂, ŷ ) for τσ‖K‖2 ≤ 1, θ = 1
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Equivalent Reformulation of the PDHG

I Algorithm solves convex relaxation due to the occurance of F ∗ in yk+1-step

min
x∈Rn

G(x) + F ∗∗(Kx)

I For the previous penalty functions ϕ, we have F ∗∗ ≡ 0

I The nonconvex aspects of the regularizer do not enter the algorithm

I Idea: formulate the algorithm in terms of the primal variable z

max
y

min
x,z

G(x) + F (z) + 〈y,Kx− z〉

I Leads to the following [Strekalovskiy, Cremers ’14], [M., et al. ’15]:

zk+1 = prox1/σ,F

(
yk/σ +Kx̄k

)
,

yk+1 = yk + σ(Kx̄k − zk+1),

xk+1 = proxτ,G

(
xk − τKT yk+1

)
,

x̄k+1 = xk+1 + θ(xk+1 − xk).

I Proposition: Equivalent to original algorithm for convex F

I Can be applied to nonconvex F in a meaningful way
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Application: Minimization of the Mumford-Shah functional

I Reformulated PDHG applied to Mumford-Shah [Strekalovskiy, Cremers ’14]

min
u:Ω→Rk

1

2
‖u− f‖2︸ ︷︷ ︸
=:G(u)

+
∑
i∈Ω

min{λ, α‖(∇u)i‖2}︸ ︷︷ ︸
=:F (∇u)

I Behaviour of algorithm with constant steps is similar to subgradient method

I Set for some c > 0, τ ∝ c, σ ∝ 1
c

, τσ‖∇‖2 ≤ 1, fixed θ = 1

0 200 400

1,000
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2,000

Iteration
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Application: Minimization of the Mumford-Shah functional
I Motivates adaptive choice of steps with τk → 0, σk → +∞
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TVq and TGVq-like Regularization for Color Images4
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Fig. 2. Illustration of a point with gradient matrix of rank two a) and two different matrices with
rank one in b) and c). A Jacobian of rank zero would correspond to a locally constant region.

zero, which has the simple interpretation of all derivatives being zero, i.e. none of the
channels changing. We therefore still expect the regularization to prefer piecewise con-
stant images. A derivative matrix with rank one on the other hand has the interpretation
that all gradient vectors are linearly dependent and hence parallel (or antiparallel).

This is illustrated in Fig. 2, where on the left we show a rank two Jacobian and on
the right two different rank one Jacobians. Note that the gradients always point in the
normal direction to the level lines of each channel, such that the lines in Fig. 2 can be
interpreted as particular level lines of the channels. The alignment of the normal lines
in all channels seems to be a reasonable regularity assumption for natural images and
leads to a reduction of color artifacts as we will see in the numerical results on color
image denoising. As illustrated in the right image in Fig. 2, a derivative matrix with two
derivative vectors being zero and one derivative vector being arbitrary also has rank one
such that color edges are not necessarily forced to be aligned as in the middle image.
We expect that the data term decides whether a full alignment as in the middle or a
pointwise alignment as in the right image of Fig. 2 are to be preferred, such that we
avoid overregularization or the introduction of artificial edges.

Furthermore, we propose to extent the idea of rank penalization of the derivatives
to the TGV framework by minimizing

TGVNq (u) := inf
ru=v+z
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The above penalization can be motivated as follows. The Jacobian ru of an image is
optimally divided into two parts. The first part corresponds to v where the Schatten-q
norm of v is penalized. Thus, the interpretation of v is similar to the plain TV case
discussed above: This part of the gradient of u should point in the same direction for

I For color images u : Ω→ R3, consider at every pixel i ∈ Ω the Jacobian matrix

(∇u)i =

(
(∂xu1)i (∂xu2)i (∂xu3)i

(∂yu1)i (∂yu2)i (∂yu3)i

)

I Possible extensions of total variation to color images by considering various

matrix norms of Jacobian [Sapiro, Ringach ’96], [Bresson, Chan ’08]

I Nonconvex generalizations of above [M., Strekalovskiy, Moeller, Cremers ’15]

TV qF (u) =
∑
i∈Ω

‖(∇u)i‖qF , TV
q
Sq (u) =

∑
i∈Ω

‖(∇u)i‖qSq , q < 1

I Furthermore, we propose similar nonconvex generalizations for the total

generalized variation (TGV) [Bredies ’10], [Bredies ’14]

I Can be efficiently solved using the nonconvex PDHG
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TVq and TGVq-like Regularization for Color Images, q = 3/4

Noisy

σ = 0.1

TGVF

PSNR=28.5

TGV qF
PSNR=28.9

TGVS1

PSNR=29.0

TGV qSq

PSNR=29.4

Algorithm works well in practice. Theoretical convergence properties?
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Convergence Analysis of Nonconvex PDHG

Theorem ([M., Strekalovskiy, Moeller, Cremers ’15])

Let G− c
2
‖ · ‖2 and F + ω

2
‖ · ‖2 be convex with c > ω‖K‖2. Then the (ergodic)

iterates (Xk) produced by the PDHG converge to the (unique) global minimizer

x̂ = arg min
x

G(x) + F (Kx),

with ‖Xk − x̂‖2 = O(1/k) for 0 < σ = 2ω, τσ‖K‖2 ≤ 1, and any θ ∈ [0, 1].

I Notice that for our proof, σ has to be twice as big as to make the proximal

minimization subproblem in z convex:

prox1/σ,F (z̃) = arg min
z

F (z) +
σ

2
‖z − z̃‖2

I A posteriori convergence (similar to [Esser, Zhang ’14]): if ‖xn+1 − xn‖ → 0

and ‖yn+1 − yn‖ → 0 and additionally (xn), (yn) and (zn) are bounded then

the iteration converges to critical points along subsequences

I Theory-practice gap I: convergence proof if overall energy is semiconvex

(experiments indicate that in the overall nonconvex setting an additional

requirement is differentiability of F )

I Theory-practice gap II: for adaptive step sizes, experiments indicate that the

algorithm converges for general nonconvex energies
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Sharpness of the Step-Size Restriction and Consequences

I Consider the minimization of λ−1
2
x2 for some λ > 1:

min
x∈R

λ

2
x2︸︷︷︸

G(x)

−
1

2
x2︸ ︷︷ ︸

F (x)

(*)

I Proposition: the step-size restriction σ ≥ 2ω is sharp. For any σ < 2 there exists

a λ > 1 such that PDHG applied to (*) diverges

I Consequence of our work: for strongly convex energies, one has some additional

modeling freedom by introducing (slightly) non-convex terms

I Example: enhanced ROF model, α > 0 sufficiently small

min
u:Ω→Rk

λ

2
‖u− f‖2 +

∑
i∈Ω

‖(∇u)i‖+ αRncvx(u)

I Application: convex non-convex (CNC) models [Parekh, Selesnick ’15],

[Lanza, Morigi, Sgallari ’16]
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Recent Convergence Results for Nonconvex Splittings

I Recently, general convergence results have been obtained for nonconvex ADMM

[Li, Pong ’15], [Wang, Yin, Zeng ’16] and Douglas-Rachford [Li, Pong ’15]

I For K = I, θ = 1, PDHG is equivalent to Douglas-Rachford splitting and ADMM

(convergence results carry over)

I For K 6= I, θ = 1, PDHG can be seen as inexact ADMM on the dual problem

(hasn’t been studied for nonconvex F to best of our knowledge)

I Local convergence result for nonlinear K [Valkonen ’13], can also be used to do

nonconvex regularization [Shekhovtsov, Reinbacher, Graber, Pock ’16]
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Conclusions / Future work

I Reformulated PDHG to be applicable to nonconvex F

I PDHG (with adaptive steps) is an efficient algorithm for nonconvex regularization

I Main theoretical result: PDHG converges for the splitting of a convex energy into

a strongly convex and semiconvex part

I Step-sizes have to be chosen with care, σ ≥ 2ω

I Practical implication: introduce nonconvexity in the presence of strong convexity

I Gaps between theory and practice: convergence analysis in fully nonconvex

setting and convergence with adaptive step sizes are open problems

I Future work: can the recent tools developed for nonconvex

ADMM/Douglas-Rachford be applied to extend our results for PDHG?

Thank you for your attention!

thomas.moellenhoff@in.tum.de
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