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1600 THAT VISION THING N

IN 1973 BEFORE | LEFT OKLAHOMA TO GO TO BROWN, DR. REID
CALLED ME INTO HIS OFFICE AND GAVE ME THE FOLLOWING
(VERY SPECIFIC) CAREER ADVICE:

@ THE WORLD IS CHANGING AND YOUR MATHEMATICS MUST
CHANGE TOO

¥ YOU SHOULD LEARN TO COMPUTE - COMPUTERS WILL
TRANSFORM THE WAY WE DO SCIENCE AND MATHEMATICS

& STATISTICS AND STOCHASTICS WILL BECOME MORE
IMPORTANT BECAUSE THE REAL WORLD IS FULL OF
UNCERTAINTIES

@ PAY ATTENTION TO APPLICATIONS — NOT THE CLASSICAL
APPLICATIONS, BUT LOOK AT NEW AREAS LIKE MATHEMATICAL
BIOLOGY, COMMUNICATION SYSTEMS OR COMPUTER SCIENCE
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The Digital Future, ZIB/FU, Berlin, May 2016 SIAM 2016, BOSTON

NO EQUATIONS, NO VARIABLES
NO PARAMETERS -even NO SPACE!

Data, and the computational modeling
of Complex/Multiscale Systems

I.G. Kevrekidis, W. Gear, R. Coifman, G. Hummer
& good people: R.Talmon, E. Chiavazzo, R.Covino, A. Georgiou

Department of Chemical Engineering, PACM & Mathematics
Princeton University, Princeton, NJ 08544
This year: EinsteinVisitor, ZIB/FU & Fischer Fellow, IAS-TUMuenchen

Princeton University
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Some well intended inaccuracies (and corrections)

Yannis Kevrekidis
Mathematician,
Princeton, inven-
ted equation-free
concept in scientific
computation, now
revolutionizing data
science,

Princeton University
|
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Some well intended inaccuracies (and corrections)

Yannis Kevrekidis
Mathematician,

. Applied (Mathematician)

Princeton, inven-
ted equation-free
concept in scientific
computation, now
revolutionizing data
science,

also
Engineer
(Chemical, Computational)
Really
Modeler

Princeton University
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Some well intended inaccuracies (and corrections)

Yannis Kevrekidis

Mathematician, . Applied (Mathematician)
Princeton, inven- also

ted equation-free Engineer

concept in scientific (Chemical, Computational)
computation, now Really
revolutionizing data

science.

Modeler

Working for a guy revolutionizing data
science (R. R. Coifman, at Yale)
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Some well intended inaccuracies (and corrections)

Yannis Kevrekidis

Mathematician, . Applied (Mathematician)
Princeton, inven- also

ted equation-free Engineer

concept in scientific (Chemical, Computational)
computation, now Really
revolutionizing data

science.

Modeler

Working with a guy revolutionizing
data science (R. R. Coifman, at Yale)



J. Ottino, NWU

T=2n

“complicated” “complex”

Princeton University
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Clustering and stirring in a plankton model

An “equation-free” demo

Young, Roberts and Stuhne, Nature 2001

Princeton University
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convection

t=0
0.6 ]
0.4 ]
100 10°
X r

Princeton University
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Coarse Projective Integration

(coarse projective Forward Euler)

Princeton University
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Projective Integration: From t=2,3,4,5 to 10

C1111CCLULL ULl versity
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Projective Integration - a sequence of outer integration steps

based on inner simulator + estimation (stochastic inference)

Accuracy and stability of these methods — NEC/TR 2001
: (w/ C. W.Gear, SIAM J.Sci.Comp. 03, J.Comp.Phys. 03,
'./ e --and coarse projective integration (inner LB)
Comp.Chem.Eng. 2002

time

Projective methods in time:

-perform detailed simulation for short periods
or use existing/legacy codes
- and then extrapolate forward over large steps

Space

Princeton University
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Effective simplicity

* Construct predictive models (deterministic, Markovian)
e Get information from them: CALCULUS, Taylor series

— Derivatives in time to jump in time
— Derivatives in parameter space for sensitivity /optimization
— Derivatives in phase space for contraction mappings

— Derivatives in physical space for PDE discretizations

In complex systems --- no derivatives at the level we need them
sometimes no variables ---- no calculus
If we know what the right variables are, we can

PERFORM differential operations
on the right variables — A Calculus for Complex Systems

Princeton University
)
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So, the main point:
* You have a “detailed simulator” --- or an experiment
* Somebody tells you what are good coarse variable(s)
e Then you can use the IDEA

— that a coarse equation exists

— to accelerate the simulation/ extraction of information.

— Equation-Free

— BUT

— How do we know what the right coarse variables are

Data mining techniques — Diffusion Maps

Princeton University
)
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Where do good coarse variables
come from?

« Systematic hierarchy (and mathematics)

— Fourier modes, moments.....

» Experience/expertise/knowledge/brilliance

— Human learning (“brain” data mining, observation, phase

fields...)

e Machine Learning

— Data mining, manifold learning (here: diffusion maps)

Princeton University




Our Approach: Data Reduction Techniques

Common linear technique: Principal Component Analysis (PCA)

Project onto hyperplane which captures maximum varfance

' 5
I

{ Data reduction '

High dimensional data on Reduced dimensionality
low-dimensional structure

Princeton University
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Dataset as Weighted Graph

Jire

weights

vertices

W. =exp| -

y

parameter f€R

Princeton University




atapoints

Top

2nd

Nth

Compute NxN “neighborhood” matrix K

-

Compute diagonal normalization matrix D

(/)
Parameter (O
Local neighborhood size

O

N
Di,i = E Ki, j
=1

Compute Markov matrix M

M=D"'K

Require: Eigenvalues A and Eigenvectors ® of M

—— M® = AP,
— M®D, =4 D,

— M®, = 1,®,

A=1>A>AL >4,

A few Eigenvalues\Eigenvectors provide
meaningful information on dataset geometry

Princeton University




®Dataset Inx,Yy, z

Diffusion Maps

Dataset Diffusion Map

15F

eigencomputation 7

N datapoints
() :
X =(xl.,yl.,zl.), i=1,N

R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker,
Geometric diffusions as a tool for harmonic analysis and structure definition
of data: Diffusion maps.

PNAS 102 (2005).

N datapoints
o' - (@

29

,i=1,N

B. Nadler, S. Lafon, R. Coifman, and I. G. Kevrekidis,
Diffusion maps, spectral clustering and reaction coordinates
of dynamical systems.

Appl. Comput. Harmon. Anal. 21 (2006).

Princeton University
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| Systematic exploration: Basic idea

Start from arbitrary IC and let
the system run for a sufficiently

long time to get into an
arbitrary potential well

Sample the bottom of

the well

Re-run starting from the
extended boundary

Did we reach 1

a new well?

Identify and extrapolate
outwardly the boundary

/

. hodes

Princeton University




‘ An 0000000ld slide — 2002— w/ G. Hummer (then NIH, now MPI Biophysik)

Reverse Projective Integration —
a sequence of outer integration steps backward;
based on forward steps + estimation

()

BG

Reverse Integration: a little forward,
and then a lot backward !

v

5 4

()

ho
1

)

0 n/4
v (rad)

Reverse Projective Euler Method k=3
T T T T T

=
[

T T T T
) = N W e

L
-

T
(a0}

T
o

C

solid:. M=5

dashed: M=8

We are studying the accuracy and stability of these methods

Princeton University
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) Boundary Detection: Alpha-Shapes

« Fit circles of radius a! such that
(a) no interior points & (b) 2
points on perimeter

* Points on the perimeter of the
circle make up the boundary

e Performed in reduced space

Image from H. Edelsbrunner and E. P. Mucke, “Three-dimensional alpha shapes,” ACM Transactions on Graphics (TOG), vol. 13, no. 1, pp. 43-72, 1994. Prlnceton UnlverSIty
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Different Ways of Extending

Cosine-DMAPs Sine-DMAPs
& Geometric & Geometric
Local PCA Harmo?ics Harmonics

Princeton University
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A Toy Example

Potential

1.5 -
-
,....s---'"-----.,,,”._’”.. 150
1
N 100
R | so
05 i g
o?‘wmr ““““““ r~--w 0
0 05 05 O |

Princeton University
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—+ * o * Ok x * ¥ :
02} x ¥ Ky ¥ . 5 *
*
+ T * F+
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Obtain manifold sample
Reduce dimensions
Find boundary

Extend boundary

Lift into ambient space
Reinitialize & repeat

1.
2.
3.
4.
5.
6.

Princeton University
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Obtain manifold sample
Reduce dimensions
Find boundary

Extend boundary

Lift into ambient space
Reinitialize & repeat

1.
2.
3.
4.
5.
6.
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Obtain manifold sample
Reduce dimensions
Find boundary

Extend boundary

Lift into ambient space
Reinitialize & repeat
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1. Obtain manifold sample

2. Reduce dimensions

3. Find boundary

4. Extend boundary
5. Lift into ambient space

6. Reinitialize & repeat
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1. Obtain manifold sample

2. Reduce dimensions

3. Find boundary
4. Extend boundary

5. Lift into ambient space
6. Reinitialize & repeat
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1. Obtain manifold sample

2. Reduce dimensions

3. Find boundary
4. Extend boundary

5. Lift into ambient space
6. Reinitialize & repeat

Princeton University



¥y 4= A

<

L
0.2

0.2

L
-0.6

)
-0.8

0.4

-1.2

1. Obtain manifold sample

2. Reduce dimensions

3. Find boundary
4. Extend boundary

5. Lift into ambient space
6. Reinitialize & repeat
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Alanine dipeptide: Step zero

Ramachandran plot: Initial data

200

150 | RS

100 |

—N\

tial data TRAPPED | Smulatign ata
- © Boundan
0 2 nearby wells of 0.1, . | Extended Bpundary

effective potential

01 g,

Princeton University




* Re-run short simulations
from previously lifted
configurations;

 Down AGAIN to the 3D

- Simulation data .
LIFT - Boundary reduced DMAP space;

Extended Boundary [* Extend boundary in DMAP

o8 @;\?r:-;)q@h space.
Oyie T P ’
REAT R < i i i i
0.1, T * Lift-up into configuration
® _'-':'_- .}\. .-.?_,_-:.- i P e ’
| S A "gf;,;':af o space, towards UNKNOWN
O 05 O e ® ”%1.? * ; "?F"‘”"'J ; regionS9 and re-run Short
® - AN

simulations AGAIN...

0.1
A 00s 0 -0.05

£2 Princeton University
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Alanine dipeptide: After two steps only

DMAP space: Second step

0.04¢ - Simulation data| |

INITIAL

(TRAPPED) 002}
DATA = - ;’ ;‘1 - .New co\:\_ﬁg}-‘—r—-’
O i .:;_.:-. &',g \f """"""""
N hEGRS ¢
W 2 Na:
-0.02 St New g -
_ e T 8Uratio,
o 2 e
-0.04 - " oA

-0.06 1

Princeton University
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Roberto Covino
and Gerhard Hummer
Max-Planck-Institute of Biophysics

ib Mga2 dimer in the membrane of the
mpl p [ ] (] [ ] (]
max-planck-insfitut Endoplasmic Reticulum of S. cerevisiae

fUr biophysik

Princeton University
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Mga2 dimer dynamics

DCl1

0.03
003 o4

Dynamics from long MD simulation
projected on the first 3 diffusion coordinates

Princeton University
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Mga2 dimer

DC3

N DCI

003 04

Dynamics from long MD simulation
projected on the first 3 diffusion coordinates

Princeton University
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What if we visited only a small region?

DC3

We focus only on a small subset and pretend
we do not know about the rest of the “world”

Princeton University
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 What if we visited only a small region?

0.025 DC 1

We focus only on a small subset and pretend
we do not know about the rest of the “world”

Princeton University
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 What if we visited only a small region?

Let us pretend
we have explored
only this region -y

.......

0.000

we do not ‘kKnew about “rest of the

“world”, and uSe “method to construct

new configurations not visited so far.

Princeton University




We can “predict” new structures

DC3
DC2 -0.005
0.000 0.005 o0 DCI
From each of the new.points:-we run a short
dynamics

Princeton University
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Some will just come back

T Starting point

T (after EM)

0.025

Princeton University
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Some will stay in the local region

o Starting point
g (after EM)

-0.01!

Ending point°

DC2

-0.005
0.000

0.025

Princeton University
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Some will leave and explore further

Starting point

+ ,(after EM)

-0.015

-0.005
DC2 0.000
0.000 0.005

0.010

0.015 DCI

0.005
0.020

0.025

Princeton University
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And we will “discover” new structures

0.03 504

Princeton University
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Leap of Faith




@ 2@  planar system

o dx/dt=y
o dy/dt=pl+p2*x+x**2—x*y

Princeton University




INPUTS

dx/dt = f(x,p)
y=G(x)

OUTPUTS, y(t)

Princeton University
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@ @ INPUTS

OUTPUTS, y(t)
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Working for Dr. Reid

“Read this and lets talk about it.”

JHLAM. Conruon ’_>
Hee A, Vol 1, No. 2 '

el iw

MATHEMATICAL DES
DYNAMICAL

It. B, XALMANY

dynan

hot
WOt

vanies nnd iy taken Lo be d

, thul which i completely obser vnl»k and cor xpm'u\ con-
y, inctneds are
e muirix.
i numb

uily une g of u sy
lable. Using the theory of controllubility and absorvabili

puise-resy

ol o given i

le I;-:!‘illu

ing irreducil
explicit proe
y to realize w given i lui("‘ Iu'.uum n.-'.':\. Diffieulties arising

ables ne

"

tioes are discussed brieily.

1s the use of reducible ceuldi

Introduction and summary. lteeeit g in opti

veo]

N
£h n ious ne

on eontrol ¢

UU. 5 \l Cip by Lhe A0

-.uh},_

tial equations

R 3
13 01 L

different longuuges huve avisen, both of w

roblem

appr

sition eguatic

woach, ¢

¢ key wor

¢ old apy

themutical tool is ¢

:nm L!"J nlzlni n
a tilferenc
are Ehe relations bet
ions? In the Ii
2 i3 bad, Commuuication between v

impeded, Tmportaut resulis of the “old theary™ are not yet

mbure, Lhis question is surround joc
areh workers

into the new theor

el 1

m of the con

ved ot |

itor’s view—whi

Wit anpr

ent o

by ig due to
i Control theory s suppused to \i al with physical
merely with wathemationl ebjects sueh sy o differentind equniiz:
fir funetion. We must thercfore pay ¢ iitiop o the relation

between physical svsteis and their representatios

ur i trans

Sl

ential oquations,

od form b

e €A S e . AT

wazs

P ——

g

LI

TR

Npp—

razior

2 A

?\". hstraet defintlion

[H" UNIK
cwtonian wo
in the mathem

) ¢

K

i definition are

have been

neckial

Just as

spaee, o

IEHNLTY

1Ol Loe pujper

maliiz, how cun we

Tioyy
canounics!

€ eonseguance

¥ ‘l‘v "/u

rreduciole

and only if the

v
19 mportant

ining the canonical structure of a cons
b

In section k wo present; probs!d

Lnenr gy

“iov Wime, n complete

ous Lireory of how s de!

11

ur .\Vu)‘.\ mi

w (iwding

an it

an

.\.:n‘, errors havi: been con

arelegsl v

A list of ¢ 'wm n
Thoe hol




In 1981, a miracle happens

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-26, NO, 1, FEBRUARY 1981

Principal Component Analysis in Linear
Systems: Controllability, Observability, and

Abstract—Kalman’s minimal realization theory involves geometric ob-
jects (controllable, unobservable subspaces) which are subject to structural
instability. Specifically, arbitrarily small perturbations in a model may
camse a change in the dimensions of the associated subspaces. This
situation is manifested in computational difficulties which arise in attempts
to apply textbook algorithms for computing a minimal realization.

Structural instability associated with geometric theories is not unique to
control; it arises in the theory of linear equations as well. In this setting,
the computational problems have been studied for decades and excellent
tools have been developed for coping with the situation. One of the main
goals of this paper is to call attention to principal component analysis
(Hotelling, 1933), and an algorithm (Golub and Reinsch, 1970) for comput-
ing the singular value decomposition of a matrix. Together they form a
powerful tool for coping with structural instability in dynamic systems.

As developed in this paper, principal component analysis is a technique
for analyzing signals. (Singular value decomposition provides the computa-
tional machinery.) For this reason, Kalman’s minimal realization theory is
recast in terms of responses to injected signals. Application of the signal
analysis to controllability and observability leads to a coordinate system in
which the “internally balanced”” model has special properties. For asymp-
totically stable systems, this yields working approximations of X, X;, the
controllable and unobservable subspaces. It is proposed that a natural first
step in model reduction is to apply the mechanics of minimal realization

using these working subspaces.

Model Reduction

BRUCE C. MOORE

Princeton University
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o Bogdanov-Takens

e The dynamical system:

(o
Y1 =142
92 = B1+ Payn + 91 — 1

» An example of a phase-portrait for
fixed parameter values \
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Bogdanov-Takens

Bifurcation Map Embedding of the
Parameters

I 1

sasaiaiiieseeseiess teiiiieed R

gl 1

0.2 0.1 g 0.1 0.2 04 0.2 0 0.2 0.4
1

Princeton University
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Bogdanov-Takens
Variables colored by
the first Variables colored by
embedding coordinate the second

embedding coordinate
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And the most amazing thing 1s

We have an algorithm that establishes relations between

“discovered” parameters p
and “discovered” state variables, short trajectories x(t)
and also “discovered/estimated” dyl/dt and dy2/dt

NOW
Use as inputs p, yl(t), y2(t)
And as OUTPUTS

We use the SAME methodology
And we now find the GENERATOR of the relation
The EQUATION ! We get a REALIZATION!

Princeton University
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example 1s a matrix of yes or no responses in a psychological
questionnaire (MMPI ), The data is undocumented ,( every column is a
profile, every row 1s a question). Nevertheless we want to separate
dysfunctional profiles .
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3 &
e,
The columns in the database have been organized into contextual groups in the geometric
scatter plot the light blue group, left extreme tip ,representing the position of the gray list of
similar profiles, and evaluated to be extremely dysfunctional ( top right corner has
Psychological scores)
e S |
Sensor folder 1/1 Point folder 6/16
| points embedding A [ 2 4| mapx
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onceptual group of questions , which are particularly informative , for the group selected

re. All the ﬂuestions :rowsz are organized into “conceEtual” codeqendent classes :shzness),
“their response In the different population groups are provided in the bottom right diagram.

&

Sensor level 2/8 Re-Organize Point level 4/8 116. Otten | can' understand why | have been so Irmtable and grouchy.
- = 185. | wish | were not so shy.
265. | am likely not to speak to people untll they s to me.
390. | wish | could get over worrying about thi have said that may have injured other peoples feelings.

Sensor folder 19/64 Point folder 7/16 408. | am agt to take disappointments so keenly that | cant put them out of my mind.
g. : ﬁg\ often sorry d‘;bcecause I ar‘:rs‘eo i;'ll;irt‘auekand grouchy.
. 2 + | map x L te going to tors even n sick.
sonsors embecdding v = 533. | forget where | leave thin?s.
3 a 566. When | am sad or blue, it IS my work that suffers.
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Another data problem,
and a small miracle

 Two kinds of model/data reduction:
* one in which the value of the fast variable
(its QSS) becomes slaved to the slow variable
 and one 1n which the statistics of the fast observable

(its quasi-invariant measure) 1s slaved to the slow observable

Princeton University
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Two types of reduction
(“ODE” and “SDE”)

DATA-DRIVEN REDUCTION OF SDES 3

Princeton University
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Manifold Learning Applied to Reducible SDEs

Consider the SDE

dx = adt + dW,

dy = -2 dt +——aw,

e e

| Ae. 0.25
0.2
Ife< s Of 0.15
1 0.1
. 0.05
21t N -
1 0 1 2 t

a=23,e=1e-3

Issue: y is still O(1),
SO we cannot recover
only x using DMAPS
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Rescaling to Recover the Slow Variables

Consider the transfori/nation Now z is of a much smaller scale than x,
LTy Ne and DMAPS will recover x
Then the SDEs become
dx = adt + dW, s
| 0.02
Z
dZ=——dl‘+dVV2 0.01
E N O N - ;
-0.01
-0.5
0 0.5 1 b,

A Princeton University
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NIVs to Recover the Slow Variables with Nonlinearities
We can also recover NIVs when the data is obscured by a nonlinear measurement fun

6 0.25
4 0.2 f,(x,y)=(y+5)cos 2x+§
~
3% 2 0.15
T 0 01 f(x,¥)=(y+5)sin 2x+§
ol 0.05

N O N AN OO
c."
A L :-*' y
L,
R
CJ
& © © o
o 2 ®
DMAPS from rescaled system
o o
o o
—_ (] -

-5 0 5 -5 0 5 ¢ -0.02 0 0.02
f,(x.y) f,(xy) NIV from nonlinear fast-slow system
Look at local clouds We again recover the slow variable x

in the data
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We have data from a For each data point, we look We estimate the
trajectory or time series at the local trajectory  local covariance using the
in order to sample the local trajectory
local noise

We then consider the distance metric

4 (x,x,) = 203, = x,)" (C() + C(x, ) (3, - x,)
where C is the estimated noise covariance.
This is the Mahalanobis distance and is invariant to the observation function
(provided the observation function is invertible).
We then use the Mahalanobis distance in a DMAPS computation.
We call the resulting DMAPS variables Nonlinear Intrinsic Variables (NIV).

C. J. Dsilva et al., The Journal of chemical physics, 2013. PI’IHCG'[OH UanGrSlty
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@ We assume the underlying intrinsic variables x(t) € R? can be described by
uncoupled stochastic differential equations

dxi(t) = ai(x(t))dt + dwi(t), i=1,....d.

where a; are unknown drift functions and w;(t) are independent white noises.

o We assume that we observe some function f(x(t)) : RY — M of the intrinsic
variables, where M C R" is a d-dimensional manifold.

@ We assume that f is bi-Lipschitz and smooth.

@ f can then be linearly approximated locally as f(x(t)) = J(t)x(t) + €(t),
where J(t) is the Jacobian of f and €(t) contains higher-order terms.

o Let C(t) be the local covariance matrix. Then C(t) = J(t)J7(t) and ®
(1) = x(7)IIF =2(F(x(2)) = F(x(7)) " (C(t) + C()) (F(x(2)) = F(x(7))
+O(||x(t)) — F(x(7))II*)
@ Therefore, the distance
d*(F(x(1)), f(x(m)) = 2(F(x(t)) — F(x(r))" (C(t) + C(7)) (F(x(t)) — f(x(7))

approximates ||x(t) — x(7)||* and is invariant to the measurement function f.

8Singer. A. and R. R. Coifman, Applied and Computational Harmonic Analysis, 2008

Intrinsic Variables for Consistent Reduction

Princeton University
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The Music of Gauge Invariance
BWYV 1065 Concerto for Four Vivaldi — Concerto for Four Violins in B Minor
Harpsichords and Strings RV 580 — II Giardino Armonico
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Thank you, over the years to

« AFOSR
« DOE
 NSF
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But today, I want us to remember

a truly special man, scientist, visionary, program director
DENNIS HEALY, 1957-2009 (Dartmouth, Maryland, DARPA)

Dennis Healy, 1957-2009
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But today, I want us to remember

a truly special man, scientist, visionary, program director
DENNIS HEALY, 1957-2009 (Dartmouth, Maryland, DARPA)

Many of Dennis’s friends and colleagues have sent additional reminiscences, stories, and comments.

One of my strongest memories of Dennis comes from one quintessential New England winter’s night. He and [ had been in the office, work-
ing into the wee hours of the morning, finishing up some piece of work—either a proposal or a paper. It snowed heavily almost all night long,
but by the time we had finished, the snowstorm had also come to an end. We turned out the lights and walked outside into a still and snow-cov-
ered campus. We decided to take a night-time stroll past the Green (now white!) and down Main Street to clear our heads before walking home.
After the night of hard work, we were in high spirits, and clowned around, throwing snowballs, shaking snow off tree branches, and just gener-
ally goofing around in the local winter wonderland. At some point we stopped and stared up into the kind of beautiful, clear, and starry night
that can be found only far from a city. [ could hardly tell the difference between the North Star and the Dog Star, but Dennis gave me one of his
excited and expert tours of the night sky. It was a night that I think stands for Dennis’s career at Dartmouth—having fun, doing math, and
delighting in the simple and sometimes hidden beauties of Nature and small-town New England.”—Dan Rockmore.
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