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also 
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 Modeler 

Working with  a guy revolutionizing 
data science   (R. R. Coifman, at Yale) 
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J. Ottino, NWU 
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Clustering and stirring in a plankton model 
 

An “equation-free” demo 
 

Young, Roberts and Stuhne,  Nature  2001  
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Dynamics of System with convection 
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 Coarse Projective Integration  
                      (coarse projective Forward Euler) 
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Projective Integration: From t=2,3,4,5 to 10 
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Projective Integration - a sequence of outer integration steps 
 based on inner simulator + estimation (stochastic inference) 

Accuracy and stability of these methods – NEC/TR 2001 
(w/ C. W.Gear,  SIAM J.Sci.Comp. 03, J.Comp.Phys. 03, 
--and coarse projective integration (inner LB) 
                                      Comp.Chem.Eng. 2002 
                           

time 

 
Space 

 Va
lu

e 
Projective methods in time: 
 
- perform detailed simulation for short periods  
             or use existing/legacy codes  
- and then extrapolate forward over large steps 
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Effective simplicity 

•  Construct  predictive models (deterministic, Markovian) 
•  Get information from them:    CALCULUS, Taylor series 

–  Derivatives in time to jump in time 
–  Derivatives in parameter space for sensitivity /optimization 
–  Derivatives in phase space for contraction mappings 
–  Derivatives in physical space for PDE discretizations 

In complex systems ---  no derivatives at the level we need them 
                                      sometimes no variables ---- no calculus 
   If we know what the right variables are, we can 
 
PERFORM  differential operations 
        on the right variables – A Calculus for Complex Systems 
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So, the main point: 
•  You have a “detailed simulator”   --- or an experiment 
•  Somebody tells you what are good coarse variable(s) 
•  Then you can use the IDEA  

–  that a coarse equation exists  
–  to accelerate the simulation/ extraction of information. 

–  Equation-Free 

–  BUT 
–  How do we know what the right coarse variables are  
 
Data mining techniques – Diffusion Maps 
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Where do good coarse variables  

come from?  
•  Systematic hierarchy (and mathematics) 

–  Fourier modes, moments….. 

 
•  Experience/expertise/knowledge/brilliance 

–  Human learning  (“brain” data mining, observation, phase 
fields…) 

•  Machine Learning 
–  Data mining, manifold learning (here: diffusion maps) 
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Dataset as Weighted Graph  
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Parameter     
Local neighborhood size 

Compute N×N  “neighborhood” matrix K 
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Compute diagonal normalization matrix D 
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Compute Markov matrix M 

N datapoints 

1 1 1M λ=Φ Φ

2 2 2M λ=Φ Φ

N N NM λ=Φ Φ

•

•

•

Require: Eigenvalues λ and Eigenvectors Φ of M 

1 2 3 Nλ λ λ λL=1> > >
A few Eigenvalues\Eigenvectors provide 

 meaningful information on dataset geometry 

Top 

2nd 

Nth 

•

•
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Dataset in x, y, z Dataset Diffusion Map 

N datapoints N datapoints 

eigencomputation 

( ) ( ), , ,  1,i
i i ix y z i N= =x ( ) ( ) ( )( )2 3, ,  1,i i i i N= Φ Φ =Φ

Diffusion Maps 

R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker, 
Geometric diffusions as a tool for harmonic analysis and structure definition 
of data: Diffusion maps. 
PNAS 102 (2005). 

B. Nadler, S. Lafon, R. Coifman, and I. G. Kevrekidis, 
Diffusion maps, spectral clustering and reaction coordinates 

of dynamical systems. 
Appl. Comput. Harmon. Anal. 21 (2006). 
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Reverse Projective Integration –  
        a sequence of outer integration steps backward; 
        based on forward steps + estimation 

We are studying the accuracy and stability of these methods 

 1 
2

3 

Reverse Integration:    a little forward,   
 and then   a lot backward ! 

 An ooooooold slide – 2002– w/ G. Hummer (then NIH, now MPI Biophysik) 
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Boundary Detection: Alpha-Shapes 
•  Fit circles of radius α-1 such that 

(a) no interior points & (b) 2 
points on perimeter 

•  Points on the perimeter of the 
circle make up the boundary 

•  Performed in reduced space 

Image from H. Edelsbrunner and E. P. Mucke, “Three-dimensional alpha shapes,” ACM Transactions on Graphics (TOG), vol. 13, no. 1, pp. 43–72, 1994. 
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Different Ways of Extending 

Local PCA 

Cosine-DMAPs 
& Geometric 

Harmonics 

Sine-DMAPs 
& Geometric 

Harmonics 
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A Toy Example 
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1.  Obtain manifold sample 
2.  Reduce dimensions 
3.  Find boundary 
4.  Extend boundary 
5.  Lift into ambient space 
6.  Reinitialize & repeat 
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1.  Obtain manifold sample 
2.  Reduce dimensions 
3.  Find boundary 
4.  Extend boundary 
5.  Lift into ambient space 
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Finds 2nd Potential Well After 14 Iterations 
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Alanine dipeptide: Step zero 

Initial data TRAPPED 
into 2 nearby wells of 
the effective potential 

LIFT 
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Alanine dipeptide: Step one 
•  Re-run short simulations 

from previously lifted 
configurations; 

•  Down AGAIN to the 3D 
reduced DMAP space; 

•  Extend boundary in DMAP 
space; 

LIFT 

•  Lift-up into configuration 
space, towards UNKNOWN 
regions, and re-run short 
simulations AGAIN… 
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Alanine dipeptide: After two steps only 

INITIAL 
(TRAPPED) 

DATA 
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A lipid saturation sensor in Euk. cells  

Mga2 dimer in the membrane of the 
Endoplasmic Reticulum of S. cerevisiae  

Roberto Covino  
and Gerhard Hummer 
Max-Planck-Institute of Biophysics 
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Mga2 dimer dynamics 

Dynamics from long MD simulation 
projected on the first 3 diffusion coordinates 

DC1 

DC2 

DC3 
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Mga2 dimer 

Dynamics from long MD simulation 
projected on the first 3 diffusion coordinates 

Zooming in 

DC1 

DC2 

DC3 
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We focus only on a small subset and pretend 
we do not know about the rest of the “world” 
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What if we visited only a small region? 

We focus only on a small subset and pretend 
we do not know about the rest of the 
“world”, and use our method to construct 
new configurations not visited so far. 

Let us pretend 
we have explored 
only this region 

DC1 DC2 

DC3 
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We can “predict” new structures 

From each of the new points we run a short 
dynamics 

DC1 
DC2 

DC3 
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Some will just come back 

Starting point 
(after EM) 

DC1 

DC2 

DC3 
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Some will stay in the local region 

Ending point 

Starting point 
(after EM) 

DC1 

DC2 

DC3 
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Some will leave and explore further 

Ending point 

Starting point 
(after EM) 

DC1 

DC2 

DC3 
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And we will “discover” new structures 

DC1 

DC2 

DC3 
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Leap of Faith 
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Takens-Bogdanov (double zero) singularity 

 

•  planar system  
   
•  dx/dt =y 
•  dy/dt = β1+β2*x+x**2−x*y 
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Takens-Bogdanov (double zero) singularity 

 
 
 
 
 
  INPUTS 
 
  dx/dt = f(x,p) 
  y=G(x)  
 
OUTPUTS,   y(t) 
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Takens-Bogdanov (double zero) singularity 

 
 
 
 
 
  INPUTS 
 
  dx/dt = f(x,p)        black box 
  y=G(x)  
 
OUTPUTS,   y(t) 
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In 1981, a miracle  happens 
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Bogdanov-Takens 

•  The dynamical system: 

•  An example of a phase-portrait for  
fixed parameter values 
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Bogdanov-Takens 

Bifurcation Map Embedding of the 
Parameters 
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Bogdanov-Takens 

Embedding of 
Variables 

(colored by x) 

Embedding of 
Variables 

(colored by y) 
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Bogdanov-Takens 

Variables colored by 
the first 

embedding coordinate 
Variables colored by 

the second 
embedding coordinate 
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And the most amazing thing is 

 

  We have an algorithm that establishes relations between 
 
“discovered” parameters   p 
 and “discovered”  state variables, short trajectories   x(t) 
and also “discovered/estimated”  dy1/dt and dy2/dt 
 
NOW 
          Use as inputs    p,   y1(t) , y2(t) 
          And as OUTPUTS    dy1(t)/dt  and   d2(t)/dt     
                                              from data 
We use the SAME methodology 
And we now find the GENERATOR of the relation 
The EQUATION !   We get a REALIZATION ! 
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  We now describe a generic method to organize a database .  This 
example is a matrix of yes or no  responses in a psychological 
questionnaire (MMPI ), The data is undocumented ,( every column is  a 
profile, every row is a question). Nevertheless we want to separate 
dysfunctional profiles . 
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The columns in the database have been organized into contextual groups in the geometric 
scatter plot the light blue group, left extreme tip ,representing the position of the  gray list of 
similar profiles, and evaluated  to be extremely dysfunctional ( top right corner has 
Psychological scores) 
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A conceptual group of questions , which are particularly  informative , for the group selected 
before.   All the questions (rows) are organized into “conceptual”  codependent classes (shyness), 
their response in the different population groups are provided in the bottom right diagram. 
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Another data problem,  

and a small miracle 

 
•  Two kinds of model/data reduction: 
•     one in which the value of the fast variable 
  (its QSS)  becomes slaved to the slow variable 
•     and one in which the statistics of the fast observable 
  (its quasi-invariant measure) is slaved to the slow observable 
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Two types of reduction  
(“ODE” and “SDE”) 
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Consider the SDE 
 
 
 
 
 
 
 
 
 
 
 
 
If ε < 1, then x is the only slow variable  

Manifold Learning Applied to Reducible SDEs 

1

2
1

dx adt dW
ydy dt dW
ε ε

= +

= − +

Issue: y is still O(1),  
so we cannot recover  
only x using DMAPS 

a = 3, ε=1e-3  
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Now z is of a much smaller scale than x,  
and DMAPS will recover x 
 
 
 
 
 
 
 
 
Note: after this transformation,  
the two SDEs both have  
noise with unit variance 

Consider the transformation  
z = y √ε 

 
Then the SDEs become 
 
 
 
 
 
 
 
 

Rescaling to Recover the Slow Variables 

1

2

dx adt dW
zdz dt dW
ε

= +

= − +
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NIVs to Recover the Slow Variables with Nonlinearities  

1

2

( , ) ( 5)cos 2
2

( , ) ( 5)sin 2
2

yf x y y x

yf x y y x

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

We again recover the slow variable x Look at local clouds  
in the data 

We can also recover NIVs when the data is obscured by a nonlinear measurement function 
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Computing the Distance Metric from Empirical Data 

We have data from a 
trajectory or time series 

For each data point, we look 
at the local trajectory 
in order to sample the 

local noise 

We estimate the 
local covariance using the 

local trajectory 

We then consider the distance metric 
 
 
                                where C is the estimated noise covariance. 
This is the Mahalanobis distance and is invariant to the observation function 
(provided the observation function is invertible). 
We then use the Mahalanobis distance in a DMAPS computation. 
We call the resulting DMAPS variables Nonlinear Intrinsic Variables (NIV). 

2 †( , ) 2( ) ( ( ) ( )) ( )T
i j i j i j i jd x x x x C x C x x x= − + −

C. J. Dsilva et al., The Journal of chemical physics, 2013. 
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The Music of Gauge Invariance 

Vivaldi – Concerto for Four Violins in B Minor 
RV 580 – II Giardino Armonico 

BWV 1065 Concerto for Four 
Harpsichords and Strings  
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Data and the Science of Crystal Balls 
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Thank you, over the years to 

•  AFOSR     
•  DOE     
•  NSF 
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But today, I want us to remember 

a truly special  man, scientist, visionary, program director 
DENNIS HEALY, 1957-2009   (Dartmouth, Maryland, DARPA) 
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