Coordinate Update Methods in Image Processing and Machine
Learning

Wotao Yin (UCLA Math)

Zhimin Peng & Tianyu Wu (UCLA), Yangyang Xu (IMA), Ming Yan
(MSU)

SIAM Imagin — May 23rd, 2016

1/20

Goal and Approach

= Goal: Develop fast and scalable algorithms for more complicated

optimization problems

= Approach: Coordinate update, which is fast and becomes even faster when

running in a parallel fashion

ERM and stochastic methods

N
T 1
minimize r(x) + N Zl fi(x)
interested in large N

often called empirical risk minimization (ERM)

nice structures: f;'s are smooth and r is proximable
stochastic methods: SG, SAG, SAGA, SVRG, Finito

issues: update x € R™; model is restricted

Coordinate descent methods

m
. 1
minimize f(z1,...,x — Z ri(x
TER™ m
i=1

interested in large m

nice structures: f is smooth and r;'s are separably proximable
coordinate (descent) methods: (shuffled) cyclic, random, greedy, parallel

issues: do not work with total variations and linear constraints

Issues with coupled nonsmooth functions

minimize f(z1,z2) + r(z1, z2)
z=(z1,22)

= joint minimization condition
0= [pl} + {ql} , where [pl} =V f(z1,z2), {ql] € or(x1,x2)
b2 q2 p2 g2

= coordinate minimization conditions:

min: 0=pi+q where p1 =Vif(x1,22), 1 € Orir(z1,x2)

x1

min: 0=ps+qs where ps =Vif(z1,72), g2 € Oar(w1,72)

2

= The issue:

[p1] =V f(z1,22) vV |:ql} & or(x1,x2) X
p2 q2

(but true if r is separable)

Today:

Consider

= r(z) is nonsmooth and coupled, and

= linear constraints Az = b.

Approach:
= minimization = primal-dual optimality condition
= then, apply forward-backward splitting (recover Chambolle-Pock)
= then, apply sequential coordinate update

= then, apply asynchronous parallel coordinate update

Expectation: 3-5x faster with 1 core; >16x faster with 32 cores; much larger

problems can be solved

Primal dual optimality condition

minimize f(z)+ g(y) + h(Az)
TEH

» example: minimize, %|Bu — b||* + {0,255 () + Al|Vu1.
= optimality condition: 0 € (Vf + g + AT 0 Oh o A)(x).
= operator form:
Vi 0 dg 0 AT x
0 €)
=L+ 15 2]

—— ~—~
operator A operator B z

= let U be invertible, v > 0; note that A and (U + vB) is single-valued

0€e(A+B)z < —vAz € yBz
S (U —-—~vA)z e (U+B)z
S (U4B) U -~7A)z ==z

= the forward-backward splitting algorithm
= (U +~4B) (U —4A)ZF
(converges if « is sufficiently small; diverges unboundedly if no fixed-point)

= set a proper U to cancel terms, yielding Chambolle-Pock (Condat-Vu):

skt = Prox. (s +yALh),
et = prox, (a8 — n(Vf(") + AT (25" — s1))),

ng

N

Coordinate update

Zk+1 — Tzk

suppose z € R™; write T' = (T1,...,Tm) so that T3z = (T'2);
coordinate update: pick a coordinate i € [m]
zf“ = T,-zk
keep zf“ =2¥ Vj #.
benefits: small memory footprint, parallelizable or sequential

requirement: cost[Tiz] ~ -cost[Tz]

Coordinate friendly operator

allow: maintain quantities M(z) in memory and update them
let: 2T be obtained from z after the update T}z
Definition: T is coordinate friendly if
1
t +)} = O(—cost T
cos [{z,M(z)}}—){z ,M(z)}] (mcos [zr—> z])

generalizes to coordinate blocks in obvious ways

Chambolle-Pock is coordinate friendly

shT = Prox. - (s® + yAz®),
2" = prox, (z¥ — n(Vf(z*) + AT (251! — s))),
Theorem

Assumptions: Functions g and h are separable and proximable. V f is
coordinate friendly.

Conclusion: The Chambolle-Pock algorithm is coordinate friendly.

Also applies to other primal-dual, e.g., Chen-Huang-Zhang, Inverse Problems’13

See UCLA CAM 16-13 for

coordinate-friendly V f

coordinate-friendly operator splitting: forward-backward,
backward-forward, Douglas-Rachford, ADMM ...

applications in machine learning, SVM, (group) LASSO, logistic
regression, SOCP, TV imaging, portfolio optimization, etc.

parallel update s and x (instead of updating s then x)

overlapped block coordinate updates (to save computation)

CT simulation

284 x 284, 90 beam projections, 362 measurements each beam

partitioned to 284 columns (blocks), run 100 epochs

(a) Phantom image (b) Recovered by PDS

10ty 3

10°4 3

0 20 a0 60 80 100
Epochs

) Recovered by PDS coord (d) Objective function value

35 Years of CPU Trend

Number
of CPUs

Performance
per core

Cores
per CPU

v

1995 2000 2005 2010 2015

D. Henty. Emerging Architectures and Programming Models for Parallel Computing, 2012.

14 /20

Sync-parallel versus async-parallel

Agent | (][]
) BT —
Agent 3 [T]

Synchronous
(wait for the slowest)

Agent | [T]
Y o E— —
Agent 3 [T]

Asynchronous
(non-stop, no wait)

15/20

ARock!: Async-parallel coordinate update

=z = (X1, ., Tm) €EH1 X oo X Hpp,

= p agents, possibly # m

- S-L =1- Tz
= each agent randomly picks ¢ € {1,...,m}:
PR TG A (only update ;)

* 0<di <7, maximum delay

1 Peng-Xu-Yan-Y'15
16 /20

Convergence guarantees for ARock
(async-parallel random coordinate descent)

notation:
= m is # coordinates
= 7 is the maximum delay
1

= uniform selection p; = -~

Theorem (almost sure convergence)
Assume that T is nonexpansive and has a fixed point. Use step sizes

Mk € [€, m% Vk. Then, with probability one, ¥ — z* € FixT.

Consequence:
= O(1) step size if T ~ /m

= assuming similar agents, linear speedup with up to O(y/m) parallel agents.

= do not bother with synchronizing until p > O(,/m)

Example: sparse logistic regression

= /; regularized logistic regression:

N
T
mmelgnze Mzl + = Z 1 + exp(—b; - a; a:)), (1)
= n features, NV labeled samples
= each sample a; € R™ has its label b; € {1,—1}
Name N (#samples) n (#features) F#nonzeros in {ai,...,an}

revl 20,242 47,236 1,498,952
news20 19,996 1,355,191 9,097,916

Speedup tests

= implemented in C++ and OpenMP.

= 32 cores shared memory machine.

rcvl news20
#£cores Time (s) Speedup Time (s) Speedup

async | sync | async | sync | async | sync | async | sync
1 122.0 | 122.0 1.0 1.0 | 591.1 | 591.3 1.0 1.0
2 63.4 | 104.1 1.9 1.2 | 304.2 | 590.1 1.9 1.0
4 32.7 83.7 3.7 1.5 | 150.4 | 557.0 3.9 1.1
8 16.8 63.4 7.3 1.9 78.3 | 525.1 7.5 1.1
16 9.1 45.4 135 2.7 41.6 | 493.2 14.2 1.2
32 4.9 30.3 24.6 4.0 22.6 | 455.2 26.1 1.3

Conclusions:

= Many problems in imaging and machine learning are coordinate friendly
= Coordinate update is faster

= Coordinate update can be (asynchronously) parallelized

References: UCLA CAM 77-77 and CAM 16-13

Also: ARock talk by Ming Yan (tomorrow 2pm, MS37 in Alvarado Ballroom G)

