
Coordinate Update Methods in Image Processing and Machine
Learning

Wotao Yin (UCLA Math)

Zhimin Peng & Tianyu Wu (UCLA), Yangyang Xu (IMA), Ming Yan
(MSU)

SIAM Imagin — May 23rd, 2016

1 / 20

Goal and Approach

• Goal: Develop fast and scalable algorithms for more complicated
optimization problems

• Approach: Coordinate update, which is fast and becomes even faster when
running in a parallel fashion

2 / 20

ERM and stochastic methods

minimize
x∈Rm

r(x) + 1
N

N∑
i=1

fi(x)

• interested in large N

• often called empirical risk minimization (ERM)

• nice structures: fi’s are smooth and r is proximable

• stochastic methods: SG, SAG, SAGA, SVRG, Finito

• issues: update x ∈ Rm; model is restricted

3 / 20

Coordinate descent methods

minimize
x∈Rm

f(x1, . . . , xm) + 1
m

m∑
i=1

ri(xi)

• interested in large m

• nice structures: f is smooth and ri’s are separably proximable

• coordinate (descent) methods: (shuffled) cyclic, random, greedy, parallel

• issues: do not work with total variations and linear constraints

4 / 20

Issues with coupled nonsmooth functions

minimize
x=(x1,x2)

f(x1, x2) + r(x1, x2)

• joint minimization condition

0 =
[
p1

p2

]
+
[
q1

q2

]
, where

[
p1

p2

]
= ∇f(x1, x2),

[
q1

q2

]
∈ ∂r(x1, x2)

• coordinate minimization conditions:

min
x1

: 0 = p1 + q1 where p1 = ∇1f(x1, x2), q1 ∈ ∂1r(x1, x2)

min
x2

: 0 = p2 + q2 where p2 = ∇1f(x1, x2), q2 ∈ ∂2r(x1, x2)

• The issue: [
p1

p2

]
= ∇f(x1, x2) 3

[
q1

q2

]
6∈ ∂r(x1, x2) 7

(but true if r is separable)

5 / 20

Today:

Consider

• r(x) is nonsmooth and coupled, and

• linear constraints Ax = b.

Approach:

• minimization ⇒ primal-dual optimality condition

• then, apply forward-backward splitting (recover Chambolle-Pock)

• then, apply sequential coordinate update

• then, apply asynchronous parallel coordinate update

Expectation: 3–5x faster with 1 core; >16x faster with 32 cores; much larger
problems can be solved

6 / 20

Primal dual optimality condition

minimize
x∈H

f(x) + g(y) + h(Ax)

• example: minimizeu 1
2‖Bu− b‖

2 + ι[0,255](u) + λ‖∇u‖1.

• optimality condition: 0 ∈ (∇f + ∂g +AT ◦ ∂h ◦A)(x).

• operator form:

0 ∈
([
∇f 0
0 0

]
︸ ︷︷ ︸
operator A

+
[
∂g

∂h∗

]
+
[

0 A>

−A 0

]
︸ ︷︷ ︸

operator B

) [
x

s

]
︸︷︷︸
z

,

7 / 20

• let U be invertible, γ > 0; note that A and (U + γB) is single-valued

0 ∈ (A+ B)z ⇔ −γAz ∈ γBz

⇔ (U − γA)z ∈ (U + γB)z

⇔ (U + γB)−1(U − γA)z = z

• the forward-backward splitting algorithm

zk+1 = (U + γB)−1(U − γA)zk

(converges if γ is sufficiently small; diverges unboundedly if no fixed-point)

• set a proper U to cancel terms, yielding Chambolle-Pock (Condat-Vu):{
sk+1 = proxγh∗ (sk + γAxk),
xk+1 = proxηg(xk − η(∇f(xk) +AT (2sk+1 − sk))),

8 / 20

Coordinate update

zk+1 = Tzk

• suppose z ∈ Rm; write T = (T1, . . . , Tm) so that Tiz = (Tz)i

• coordinate update: pick a coordinate i ∈ [m]

zk+1
i = Tiz

k

keep zk+1
j = zkj ∀j 6= i.

• benefits: small memory footprint, parallelizable or sequential

• requirement: cost[Tiz] ∼ 1
m

cost[Tz]

9 / 20

Coordinate friendly operator

• allow: maintain quantities M(z) in memory and update them

• let: z+ be obtained from z after the update Tiz

• Definition: T is coordinate friendly if

cost
[
{z,M(z)} 7→ {z+,M(z+)}

]
= O

(1
m

cost
[
z 7→ Tz

])
• generalizes to coordinate blocks in obvious ways

10 / 20

Chambolle-Pock is coordinate friendly

{
sk+1 = proxγh∗ (sk + γAxk),
xk+1 = proxηg(xk − η(∇f(xk) +AT (2sk+1 − sk))),

Theorem
Assumptions: Functions g and h are separable and proximable. ∇f is
coordinate friendly.
Conclusion: The Chambolle-Pock algorithm is coordinate friendly.

Also applies to other primal-dual, e.g., Chen-Huang-Zhang, Inverse Problems’13

11 / 20

See UCLA CAM 16-13 for

• coordinate-friendly ∇f

• coordinate-friendly operator splitting: forward-backward,
backward-forward, Douglas-Rachford, ADMM ...

• applications in machine learning, SVM, (group) LASSO, logistic
regression, SOCP, TV imaging, portfolio optimization, etc.

• parallel update s and x (instead of updating s then x)

• overlapped block coordinate updates (to save computation)

12 / 20

CT simulation

• 284× 284, 90 beam projections, 362 measurements each beam
• partitioned to 284 columns (blocks), run 100 epochs

13 / 20

35 Years of CPU Trend

1995 2000 2005 2010 2015

Number

of CPUs

Performance

per core

Cores

per CPU

D. Henty. Emerging Architectures and Programming Models for Parallel Computing, 2012.

14 / 20

Sync-parallel versus async-parallel

Agent 1

Agent 2

Agent 3

idle idle

idle

idle

Synchronous
(wait for the slowest)

Agent 1

Agent 2

Agent 3

Asynchronous
(non-stop, no wait)

15 / 20

ARock1: Async-parallel coordinate update

• x = (x1, . . . , xm) ∈ H1 × · · · × Hm
• p agents, possibly 6= m

• Si = I − Ti
• each agent randomly picks i ∈ {1, . . . ,m}:

xk+1
i ← xki − ηkSi(xk−dk) (only update xi)

xk+1
6=i ← xk6=i

• 0 ≤ dk ≤ τ , maximum delay

1Peng-Xu-Yan-Y.’15
16 / 20

Convergence guarantees for ARock
(async-parallel random coordinate descent)

notation:
• m is # coordinates

• τ is the maximum delay

• uniform selection pi ≡ 1
m

Theorem (almost sure convergence)
Assume that T is nonexpansive and has a fixed point. Use step sizes
ηk ∈ [ε, 1

2m−1/2τ+1), ∀k. Then, with probability one, xk ⇀ x∗ ∈ FixT .

Consequence:
• O(1) step size if τ ∼

√
m

• assuming similar agents, linear speedup with up to O(
√
m) parallel agents.

• do not bother with synchronizing until p > O(
√
m)

17 / 20

Example: sparse logistic regression

• `1 regularized logistic regression:

minimize
x∈Rn

λ‖x‖1 + 1
N

N∑
i=1

log
(
1 + exp(−bi · aTi x)

)
, (1)

• n features, N labeled samples

• each sample ai ∈ Rn has its label bi ∈ {1,−1}

Name N (#samples) n (#features) #nonzeros in {a1, . . . , aN}
rcv1 20,242 47,236 1,498,952

news20 19,996 1,355,191 9,097,916

18 / 20

Speedup tests

• implemented in C++ and OpenMP.

• 32 cores shared memory machine.

#cores
rcv1 news20

Time (s) Speedup Time (s) Speedup
async sync async sync async sync async sync

1 122.0 122.0 1.0 1.0 591.1 591.3 1.0 1.0
2 63.4 104.1 1.9 1.2 304.2 590.1 1.9 1.0
4 32.7 83.7 3.7 1.5 150.4 557.0 3.9 1.1
8 16.8 63.4 7.3 1.9 78.3 525.1 7.5 1.1

16 9.1 45.4 13.5 2.7 41.6 493.2 14.2 1.2
32 4.9 30.3 24.6 4.0 22.6 455.2 26.1 1.3

19 / 20

Conclusions:

• Many problems in imaging and machine learning are coordinate friendly

• Coordinate update is faster

• Coordinate update can be (asynchronously) parallelized

References: UCLA CAM ??-?? and CAM 16-13

Also: ARock talk by Ming Yan (tomorrow 2pm, MS37 in Alvarado Ballroom G)

20 / 20

