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Uncertainty Quantification
Wikipedia:

Uncertainty Quantification (UQ) is the science of
quantitative characterizing and reduction of uncertainties
. . .

parameter parameters θ in the model that are unknown

inputs measurement error in model inputs x

algorithmic induced by approximating model

experimental observation error in response Y at input x

model structural uncertainty about the model/data
generating process

predictive interpolation or extrapolation of model at new x

Predictive uncertainty: reducible error + irreducible error

Rumsfeld’s “Known Unknowns” versus “Unknown Unknowns”
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Model Uncertainty

I Entertain a collection of models M = {Mm, m ∈ M}

I Each model corresponds to a parametric (although possibly
infinite-dimensional) distribution of the data Y:

pm(y | θm, x) = p(y | θm,Mm, x)

where θm corresponds to unknown parameters in the
distribution for Y under Mm

I Objective: Obtain predictive distributions or summaries at
inputs x∗

p(y∗ | y, x, x∗)

WLOG drop dependence on inputs, p(y∗ | y)
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Multiple Models



Bayesian Perspectives on Model Uncertainty

M-Closed the true data generating model MT is one of
Mm ∈ M but is unknown to researchers

M-Complete the true model MT exists but is not included in the
model list M. We still wish to use the models in M
because of tractability of computations or
communication of results, compared with the actual
belief model

M-Open we know the true model MT is not in M, but we
cannot specify the explicit form p(y∗ | y) because it is
too difficult conceptually or computationally, we lack
time to do so, or do not have the expertise, etc.

Bernardo & Smith (1994), Clyde & Iversen (2013)
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Predictive Distributions under M-Closed
I A Bayesian would assign a prior probability, p(Mm),

representing their belief that each model Mm is the true
model.

I Distributions p(θm | Mm) characterizing a priori uncertainty
I Bayes Theorem: posterior probability of each model

p(Mm | Y)

p(Mm | Y) =
p(Y|Mm)p(Mm)∑

m∈M p(y | Mm)p(Mm)
, m ∈ M

where p(Y | Mm) =

∫
p(Y | θm,Mm)p(θm | Mm)dθm

I Predictive distribution

p(y∗|y) =
∑
m∈M

p(y∗|Mm, y)p(Mm|y)

=
∑
m∈M

[∫
p(y∗|Mm,θm, y)p(θm|y,Mm) dθm

]
p(Mm|y)
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Estimation and Prediction

Consider the decision problem of estimation/prediction under
squared error loss

u(Y ∗, a) = −(Y ∗ − a)2

where a is a possible action (u is utility or negative loss) and Y ∗ is
an unknown.

From a Bayesian perspective, the solution is to find the action that
maximizes expected utility given the observed data Y:

EY∗|Y[u(Y∗, a)] = −
∫

(y∗ − a)2p(y∗ | y)dy∗

where the expectation is taken with respect to the predictive
distribution of Y∗ given the observed data y.
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Bayesian Model Averaging

I Under the M-closed perspective, optimal solution for
prediction is Bayesian Model Averaging

a∗ = EY∗ [Y∗ | Y] =
∑
m∈M

p(Mm | Y)Ŷ ∗Mm

where Ŷ ∗Mm
is the predictive mean of Y∗ under model Mm

I Use joint posterior distribution on θ | M and M to obtain
prediction intervals

I Full propagation of all “known” uncertainties

I Extensive literature for regression and generalized linear
models [Hoeting et al 1999, Clyde & George 2004, Bayarri et
al 2012] with invariant priors/Spike & Slab + software

I more complex models via RJ-MCMC, SMC, ABC
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Potential Problem with BMA
Two models in M

I M1 : Y = X1β1 + e

I M2 : Y = X2β2 + e

True Model Y = X1β1T + X2β2T + e

BMA Ŷ∗ = p(M1 | Y)X1β̂1 + p(M2 | Y)X2β̂2

I BMA model weights converge to 1 for the model that is
“closest” to true model in Kullback-Leibler divergence

I BMA only uses predictions from that model

I In the limit BMA is not consistent if MT /∈M
I Expand the list of models (prior specification on M)

I Other model ensembles ?
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BMA Ŷ∗ = p(M1 | Y)X1β̂1 + p(M2 | Y)X2β̂2

I BMA model weights converge to 1 for the model that is
“closest” to true model in Kullback-Leibler divergence

I BMA only uses predictions from that model

I In the limit BMA is not consistent if MT /∈M
I Expand the list of models (prior specification on M)

I Other model ensembles ?



Potential Problem with BMA
Two models in M

I M1 : Y = X1β1 + e

I M2 : Y = X2β2 + e

True Model Y = X1β1T + X2β2T + e
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BMA Ŷ∗ = p(M1 | Y)X1β̂1 + p(M2 | Y)X2β̂2

I BMA model weights converge to 1 for the model that is
“closest” to true model in Kullback-Leibler divergence

I BMA only uses predictions from that model

I In the limit BMA is not consistent if MT /∈M
I Expand the list of models (prior specification on M)

I Other model ensembles ?



Combining Models as a Decision Problem
I In M-Complete or M-Open viewpoints, if MT is not in the

list of models M then p(Mm) = 0 for Mm ∈ M.

I George Box: “All models are wrong, but some may be useful”

a(w,Y) =
∑

wmŶ
∗
m

I Treat weights {wm,m ∈ m} as part of the action space (rather
than an unknown) and maximize posterior expected utility,

EY∗|y,MT
[u(Y∗, a(w, y))] =

∫
u(y∗, a(w, y, ))p(y∗ | y,MT )

I For negative squared error:

−EY∗|y,MT
‖Y∗−a(w, y)‖2 = −

∫
‖y∗−

∑
m

wmŶ
∗
m‖2p(y∗ | y,MT )

I Focus on M-Open case
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M-Open Predictive Distribution

I No explicit form for p(y∗ | y,MT ) under MT

I partition the data: Y = (Yj ,Y(−j))
I Yj is a proxy for Y∗ (the future observation(s))
I Y(−j) is a proxy for Y (the observed data)

I randomly select J partitions,∫
u(Y∗, a(w, y))p(y∗ | y,MT ) dy∗ ≈ 1

J

J∑
j=1

u(Yj , a(w,Y(−j)))

Key et al. + Clyde & Iversen justification of cross-validation
to approximate expected posterior utility.

I Guterriez-Pena & Walker approximation to a (limiting)
Dirichlet process model for estimating unknown distribution F
for MT∫

u(y∗, a∗(w, y))dFn(y∗)→ 1

n

n∑
i=1

u(yi , a
∗(w,Y(−i)))
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Optimization Problem under Approximation
Find weights

ŵ = arg max
w
−1

J

J∑
j=1

(
Yj −

∑
m∈M

wmŶ(−j),Mm

)2

Constrained Solution:

Find weights: ŵ = arg max
w
−1

J

J∑
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Yj −

∑
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wmŶ(−j),Mm

)2

subject to
∑
i

wm = 1

wm ≥ 0 ∀m ∈M

Equivalent representation (Lagrangian):

−1

J

J∑
j=1

(
Yj −

∑
m∈M
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wmŶ(−j),Mm

)2

Constrained Solution:

Find weights: ŵ = arg max
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Comments on Solutions

Let e = [e]ji = Yj − Ŷ(−j)Mi
denote the n ×M matrix of residuals

for predicting Yj under model Mi .

I With sum to 1 constraint alone, ŵ ∝ (eTe)−11

I If residuals from models are uncorrelated, then weights are
proportional to the inverse of the cross-validation MSE for
model Mi , MSEi =

∑
j e

2
ij

I With highly correlated predictions/residual weights may be
negative and highly unstable

I Non-negativity lasso-like constraint stabilizes weights, and
may drive weights to 0 for similar models

Provides a Bayesian justification for classical stacking (Wolpert
1992, Breiman 1996)

Super-Learners! h2oEnsemble
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Ovarian Cancer Example

Predict short vs. long-term survival given primary tumor’s
molecular phenotype.

I Retrospective sample of survivors of advanced stage serous
ovarian cancer

I n = 30 short-term (< 3 years)
I n = 24 long-term (> 7 years)

I Eleven early stage (I/II) cases for external validation.

I Affymetrix U133a expression microarray; 22, 283 genes.

I 6 clinical variables
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Models for M-Open Model Averaging (MOMA)

Three classes of models:

I Clinical Trees: (5 models) Prospective classification and
regression tree models using only clinical variables such as
age, post-treatment CA125 levels, etc.

I Expression Trees: (4 models) Prospective Classification and
regression tree models using only expression data.

I Expression LDA: (4 models) Retrospective discriminant
models built using expression data given survival.

Find MOMA (M-Open Model Averaging) weights ŵ using all long
term and short term survivors

I sum to 1 constraint

I + non-negativity constraint
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Validation Experiment

I 5-fold cross validation; 5 splits of data into two groups:
Training Y and Validation Y∗

I Use training data to obtain model weights ŵ via LOO

I Construct M-Open Model Averaging (MOMA) estimates of
probability of long term survival p̂j =

∑
i ŵi Ŷ

∗
Mi

(Y) for
validation samples

I Classify as Long Term Survivor p̂j ≥ 1/2

I Compute classification accuracy over 5 Splits
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i ŵi Ŷ
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MOMA with Sum-to-1 Constraint

set1 set2 set3 set4 set5
clin1 53.08 −4.43 −0.01 −24.41 15.94
clin2 −79.92 −5.16 0.90 0.80 −4.63
clin3 −1.25 −0.24 −0.90 −0.01 5.35
clin4 27.36 10.14 −0.33 23.73 −17.24
clin5 1.13 0.27 0.27 0.36 0.55
tree1 −0.05 −0.55 −2.92 0.03 27.93
tree2 −0.12 −0.07 −3.21 −0.62 0.63
tree3 0.51 0.53 0.15 0.48 −3.35
tree4 −0.28 0.22 6.26 −0.04 −24.10

lda100.P1 −0.40 0.04 −0.01 0.02 −0.11
lda100.P2 0.44 −0.02 0.53 −0.06 −0.07
lda200.P1 0.30 0.17 −0.32 0.09 −0.03
lda200.P2 0.21 0.08 0.60 0.63 0.12
Accuracy 0.64 0.64 0.46 0.73 0.60



MOMA with Non-negativity Constraint

set1 set2 set3 set4 set5
clin1 0.00 0.07 0.00 0.00 0.00
clin2 0.00 0.00 0.00 0.00 0.00
clin3 0.00 0.00 0.00 0.00 0.00
clin4 0.00 0.11 0.00 0.00 0.00
clin5 0.30 0.17 0.07 0.41 0.00
tree1 0.00 0.00 0.00 0.00 0.77
tree2 0.00 0.00 0.00 0.00 0.21
tree3 0.23 0.44 0.21 0.00 0.01
tree4 0.00 0.00 0.00 0.00 0.01

lda100.P1 0.00 0.00 0.00 0.00 0.00
lda100.P2 0.22 0.00 0.30 0.00 0.00
lda200.P1 0.00 0.00 0.00 0.00 0.00
lda200.P2 0.26 0.21 0.41 0.58 0.00
Accuracy 0.82 0.73 0.55 0.73 0.60



More General Utilities - Yao et al (2018)

I Under negative squared error loss, only have optimal point
predictions

I Stacking probabilistic forecasts P ∈ P

a(w, y) =
∑
m

wmp(y∗ | y,Mm)

I Proper Scoring rules: S(Q,Q) ≥ S(P,Q) for P,Q ∈ P

S(P,Q) ≡
∫

S(P, ω)dQ(ω)

I Strictly Proper S(Q,Q) ≥ S(P,Q) with equality only when
P = Q almost surely

I Negative Quadratic Loss is proper, but not a strictly proper
scoring rule

I Logarithmic Score S(P, y∗) = log(p(y∗))
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Probabilistic Forecasting

I Ensemble BMA (Raftery + coauthors 2005 . . . ) weather
forecasting

arg max
w,σ2

∑
i

log(
M∑
m

wmp(y∗i | y,Mm, σ
2)

I pm Gaussian distributions centered at am + bmŶ∗
m

I allows for bias and calibration of computer model output
I common unknown variance σ2 in each component
I weights evolve with time
I multivariate outcomes

I West + coauthors Dynamic Linear Models (economic
forecasting) with dynamic weights

I Gaussian Process emulators for computer models and
statistical models
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m

I allows for bias and calibration of computer model output
I common unknown variance σ2 in each component
I weights evolve with time
I multivariate outcomes

I West + coauthors Dynamic Linear Models (economic
forecasting) with dynamic weights

I Gaussian Process emulators for computer models and
statistical models



Probabilistic Forecasting

I Ensemble BMA (Raftery + coauthors 2005 . . . ) weather
forecasting

arg max
w,σ2

∑
i

log(
M∑
m

wmp(y∗i | y,Mm, σ
2)

I pm Gaussian distributions centered at am + bmŶ∗
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forecasting) with dynamic weights

I Gaussian Process emulators for computer models and
statistical models



Discussion

I Model Averaging for Uncertainty Quantification under
different perspectives

I Dependence on Choice of Utility Functions
I squared error loss - point estimates
I proper scoring rules - distributions
I quantiles

I Partitions of data for approximation? LOO, k-fold, sequential

I Incorporation of Model Complexity/Regularization in Utility
(sum to one?)

I Optimization: Quadratic programming, EM, variational, ABC

I Mixture Models and Mixtures of Experts
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