

Image Credit (clockwise): Nature Biotechnology 25(10), Reidl (from Physical Review Publications: 1893-2009), Hagmann et al., Weng et al

Fast [Graph] Algorithms?

Fact: Most interesting graph problems are NP-complete for general graphs

- Subgraph isomorphism (motifs)
- Vertex cover (sensor networks)
- Independent set (linear algebra)
- Max clique (protein groups)

"I can't find an efficient algorithm, but neither can all these famous people."

A Few "Good" Things to Limit in a (highly debatable) increasing order of complexity

Density

Degeneracy

Hyperbolicity

Treewidth

Expansion

Bad news...

This talk is (almost) all about the definitions!

Saved by Sparsity?

Observation 1 (v. 0.0)

Many real-world networks have low average degree.

Observation 2:

Edges are not evenly distributed in real graphs.

Facebook: |V| ~ 1.3B, |E| ~ 500B Yeast PPI: |V| = 3000, |E| ~ 3000 Power Grid: |V| ~ 5K, |E| ~ 13K Neurome: |V| ~ 10¹⁰, |E| ~ 10¹⁴ Twitter: |V| ~ 1B, |E| ~ 200B

(easy to see if you think social)
Twitter: avg followers: 200,
max followers ~59M
Facebook: # friends varies
inter- vs intra-community

Consequences:

Some algorithms get faster (but NP-hard problems remain)

Hypothesis:

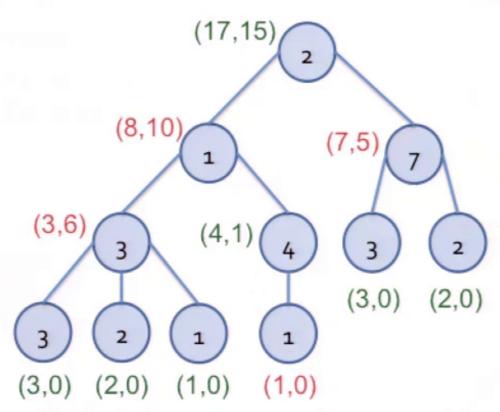
This "should" help.
But how exactly?

What could it mean to be structurally sparse?

Sparsity 1.0: Tree Structure

No cycles makes things easy!

MAXWIS: Find the maximum weighted independent set in G



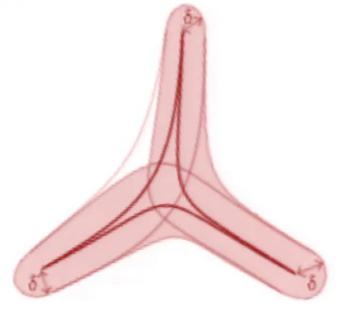
This NP-hard problem has a linear algorithm on trees!

For those who care, belief propagation also has nice algorithms on trees.

Sparsity 1.1: δ-hyperbolicity (tree-like structure 1)

 δ measures the extent to which a (geodesic) metric space embeds in a tree metric [lower is better].

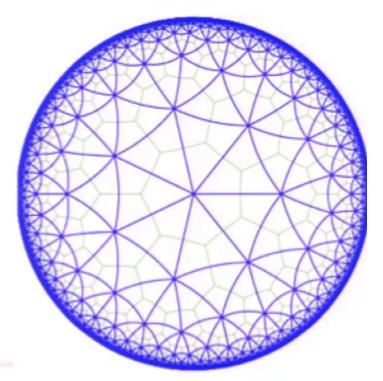
There are several equivalent definitions (up to constant factors): δ -slim, δ -thin, or δ -fat triangles, and Gromov's 4-point condition. In our proofs we use the following:



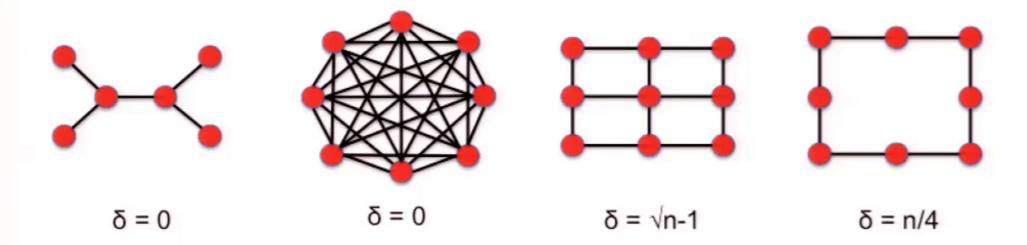
- A geodesic triangle is called δ-slim if each of its sides is contained in the δ-neighborhood of the union of the other two sides).
- A metric space (graph) is δ -hyperbolic if all its geodesic triangles are δ -thin (or δ -slim); each results in a slightly different min δ , related to each other by small constant factors.

Aside: Hyperbolic Space

- Multiple parallel lines pass through a point, and angles in a triangle sum to < 180.
- Hyperbolic space gives us "extra room" to embed networks (as opposed to Euclidean space).
- In Euclidean space, a circle's area grows polynomially with its diameter; in hyperbolic space, it grows exponentially.
- Shortest paths in hyperbolic spaces are arcs through disk, not paths around the exterior.



Examples and Implications



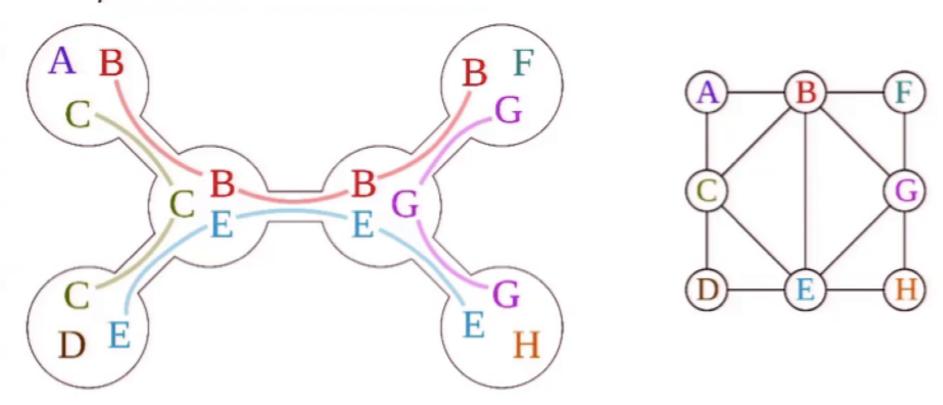
Warning: Low hyperbolicity doesn't imply traditional sparsity!

Algorithms for graph classes of bounded hyperbolicity often exploit computable approximate distance trees (Chepoi et al) or greedy routing (Kleinberg).

Work of Narayan/Saniee and Jonckheere et al conjectures that some of the observed **congestion** in real-world networks may be due to their negative curvature (hyperbolicity).

Sparsity 1.2: Bounded Treewidth (tree-like structure 2)

 A graph class G has bounded treewidth if every graph has a tree decomposition of width at most c.



Usefulness: Most algorithms which are polynomial-time on trees can be extended to work in poly-time on bounded treewidth (pay an exponential factor in terms of the width)

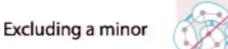
A Hierarchy of Sparsity

Nowhere dense

Locally bounded expansion

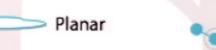
Locally excluding a minor

Bounded expansion



Locally bounded treewidth

Bounded genus



Bounded degree

Bounded treewidth

Bounded treedepth

Outerplanar

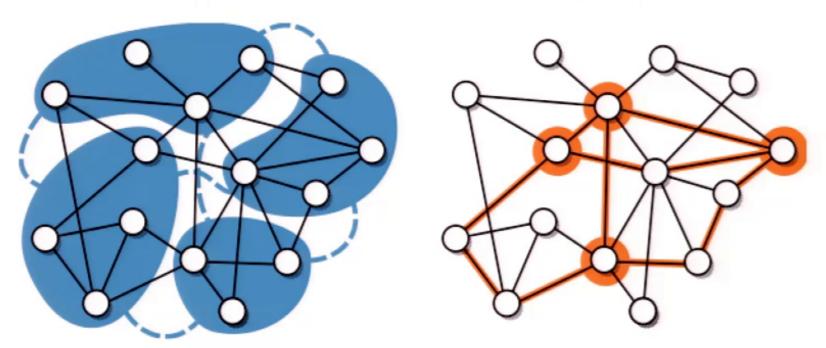
Linear forests

Star forests

Sparsity 3.0: Bounded Expansion

 A graph class G has bounded expansion if every r-shallow (topological) minor has density at most f(r).

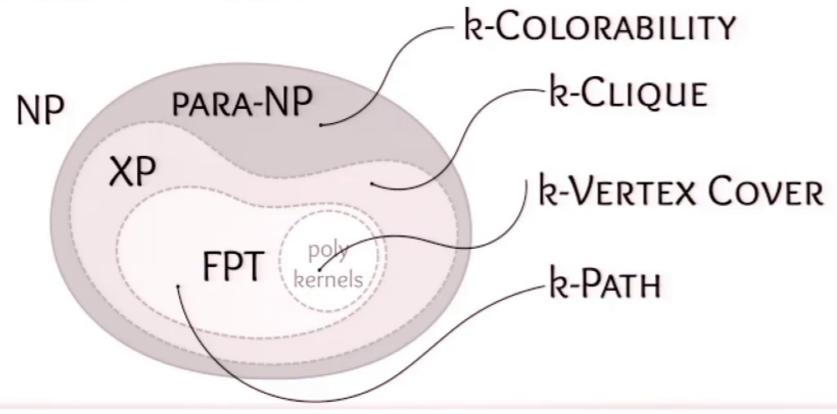
$$\nabla_r(G) = \max_{H \in G \, \forall r} \frac{|E(H)|}{|V(H)|} \quad \nabla_r(\mathcal{G}) := \sup_{G \in \mathcal{G}} \nabla_r(G) \le f(r)$$



Note: Algorithms don't require knowing f(r).

Aside: Parameterized Complexity

- NP: solvable with non-deterministic Turing machine
- **XP**: has an $O(n^{f(k)})$ algorithm.
- **FPT**: has an $f(k)n^{O(1)}$ algorithm.
- Poly-kernel: the kernel has size k^{O(1)}



FPT Algorithms & Graph Structure: Pros & Cons

Lots of problems become FPT:

STEINER TREE (bounded degeneracy)

DOMINATINGSET (bounded genus)

SUBGRAPHISOMORPHISM (bounded expansion)

MaxWIS (bounded treewidth)

And there are meta-theorems!

FO-model checking on nowhere-dense graphs* (k = formula size)

EMSO-model checking parameterized by treewidth

BUT

Real-world networks might not fall into any of these categories!

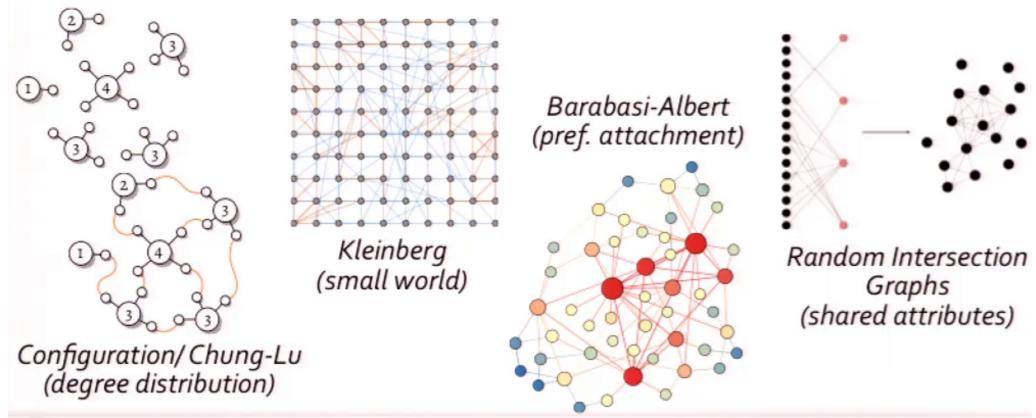
Worse, it's hard to test membership & many existing results are negative

The algorithms often have [huge] hidden constants

How do we know if real networks have these fancy variants of sparsity?

Connecting (with) the dots

- Challenge: instances vs. classes
- Goal: classify networks by their features/characteristics
- Typical Approach: find randomized models that match desired features – use these to represent the class



A bit of bad news

Bounded Edge Density:

Holds in practice, but doesn't speed up many algorithms

Bounded Degree:

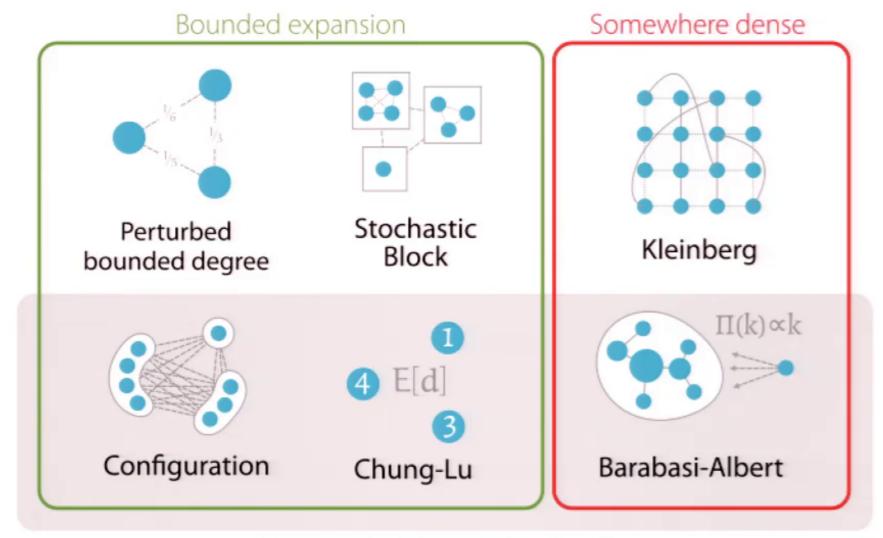
- Erdös-Rényi O(log n)
- Molloy-Reed [depends on specified degree sequence]
- Random Intersection Graphs ($\alpha \le 1$)

Bounded Treewidth:

- Erdös-Rényi O(n) [Gao, 2009]
- Barabasi-Albert O(n) [Gao, 2009]
- Empirical evidence on real data [Adcock et al, 2013]

Related work: A Plethora of New Classifications!

[with Demaine, Reidl, Rossmanith, Sanchez Villaamil, Sikdar; 2015+]



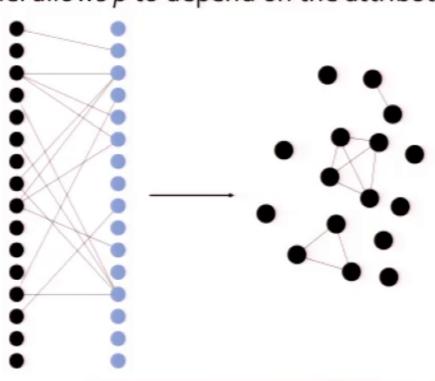
Heavy-tailed degree distribution

* Includes configuration with households (high clustering) & inhomogenous random graphs.

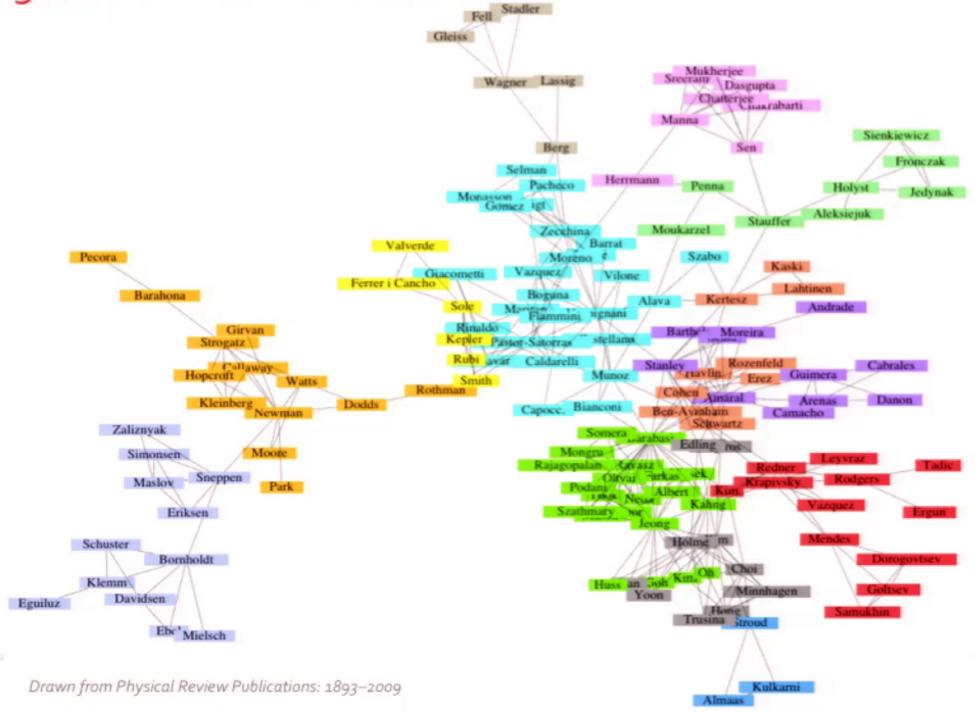
Today's focus: Random Intersection Graphs

- Introduced by Karónski, Scheinerman, Singer-Cohen in the late 90's.
- Model collaboration graphs (from arXiv), affiliation groups, etc.
- Let n be the number of nodes and α , β , γ be constants.
- Set $m = \theta n^{\alpha}$, B a bipartite graph with parts U, V of size n and m, respectively.
- For every pair u in U and v in V, add the edge (u,v) with probability $p=yn^{-(1+\alpha)/2}$.
- More generally, the inhomogenous model allows p to depend on the attribute.

RIG(n,m,p) is the graph on U where u_1 and u_2 are adjacent iff there exists v in V so that (u_1,v) and (u_2,v) are edges of B.

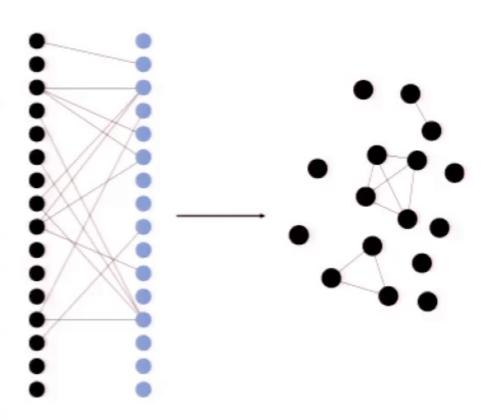


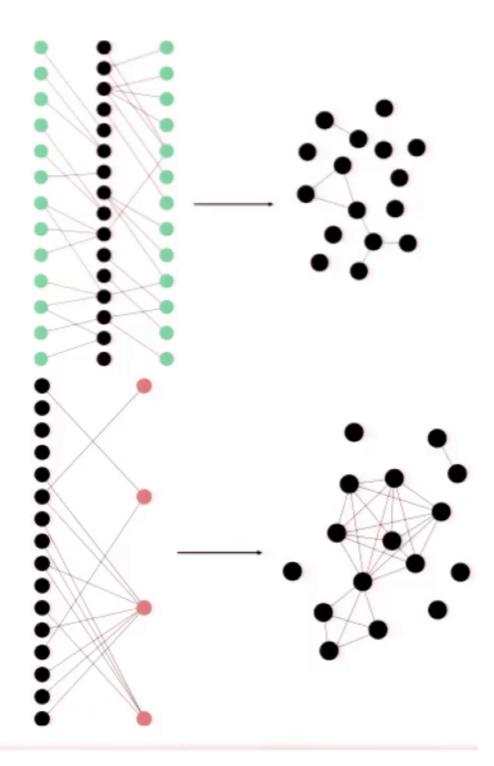
e.g. Newman's Network Science



Random Intersection Graphs

• $m = \beta n^{\alpha}$ creates three regimes of behavior: $\alpha < 1$, $\alpha = 1$, $\alpha > 1$





RIG Results!

Degeneracy & Expansion

Theorem: RIG(n, m, p) has degeneracy: $\Omega(\gamma n^{(1-\alpha)/2}) \text{ when } \alpha < 1$ $\Omega(\log n/\log \log n) \text{ when } \alpha = 1 \text{ and } O(1) \text{ when } \alpha > 1.$

Theorem: For $\alpha \le 1$, w.h.p. RIG(n, m, p) is *somewhere* dense (contains arbitrarily large cliques as shallow minors), and thus not bounded-expansion.

Theorem: For $\alpha > 1$, w.h.p. RIG(n,m,p) has bounded expansion.

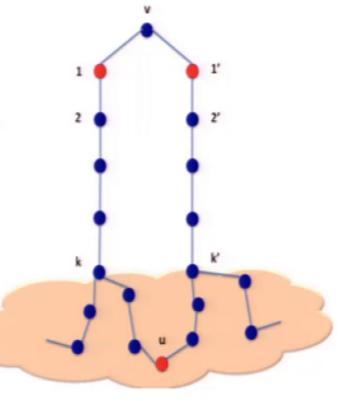
All results on this page were proved w.h.p. (with high probability): for any $c \ge 1$ the event occurs with probability at least $1 - f(c)/n^c$ for large enough n.

(non-) Hyperbolicity

Theorem: Under reasonable restrictions on β and γ , a.a.s. RIG(n, m, p) has hyperbolicity $\Omega(\log n)$ for all values of α .

Proof Sketch:

We extend the method of Narayan et al for ER graphs, and randomly "expose" a large enough fraction of the vertices to w.h.p. contain a giant component. We prove there is an induced path in the "hidden" portion of length proportional to $\log n$ whose internal vertices have no other neighbors in the graph and whose endpoints lie in the giant component of the exposed graph. It then follows that there is a cycle formed using this "handle" (path) which cannot have shortcuts, and thus delta is at least k/4.



Note this is "only" a.a.s. (asymptotically almost surely): probability of event tends to one in the limit.

Shameless Plug

NC STATE Engineering

PUTTING THEORY INTO PRACTICE

The College of Engineering congratulates **Dr. Blair D. Sullivan** on her Moore Investigator Award

We're Hiring!

Postdoc positions available!

3-5 openings likely in 2015-2020.

Know a great undergrad?

Encourage them to apply to NC State CSC and list me as faculty they're interested in working with!