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Fast [Graph] Algorithms?

Fact: Most interesting graph problems are
NP-complete for general graphs

* Subgraph isomorphism (motifs)

* Vertex cover (sensor networks)

* Independent set (linear algebra)

* Max clique (protein groups) R R

A Few “"Good” Things to Limit

in a (highly debatable) increasing order of complexity

Density
Degeneracy
Hyperbolicity
Treewidth

Expansion



Bad news...

This talk is (almost) all about the definitions!



Saved by Sparsity?

Observation 1 (v. 0.0) Observation 2:
Many real-world networks have Edges are not evenly
low average degree. distributed in real graphs.

Facebook: |V| ~ 1.3B, |E| ~ 500B i ® & (easy to seeif you think social)

Yeast PPI: |V| = 3000, |E| ~ 3000 " Twitter: avg followers: 200,
Power Grid: |V| ~ 5K, |E| ~ 13K ;‘ max followers ~ggM
Neurome: |V| ~ 10%°, |E| ~10% ¢ ~  Facebook: # friends varies

Twitter: |V| ~ 1B, |E| ~ 200B 5 2 inter- vs intra-community

Consequences:
Some algorithms get faster

(but NP-hard problems remain) fj |

/ Hypothesis:
This "should” help.
\\“ But how exactly?

What could it mean to be structurally sparse?

' ) - % | D\AST B
Imagqges credit Felix Reidl (RWTH Aachen)



Sparsity 1.0: Tree Structure

No cycles makes things easy!

* MAXWIS: Find the maximum weighted independent set in G

(3,0) (2,0)

®
3.0) (2,0) (1,0) (1.0)
This NP-hard problem has a linear algorithm on trees!

For those who care, belief propagation also has nice algorithms on trees.



Sparsity | e 5-hyperbo|icity (tree-like structure 1)

6 measures the extent to which a (geodesic) metric space
embeds in a tree metric [lower is better].

B

There are several equivalent
definitions (up to constant factors):
o-slim, o6-thin, or o-fat triangles,
and Gromov’s 4-point condition.
In our proofs we use the following:

* A geodesic triangle is called &-slim if each of its sides is contained in
the & -neighborhood of the union of the other two sides).

* A metric space (graph) is & -hyperbolic if all its geodesic triangles
are 0 -thin (or &-slim); each results in a slightly different min §,
related to each other by small constant factors.

Image credit: Bridson, Haefliger



Aside: Hyperbolic Space

* Multiple parallel lines pass through a point, \J
and angles in a triangle sum to < 18o0.

* Hyperbolic space gives us “extra
room” to embed networks (as
opposed to Euclidean space).

* In Euclidean space, a circle’s area grows
polynomially with its diameter; in
hyperbolic space, it grows exponentially.

* Shortest paths in hyperbolic spaces
are arcs through disk, not paths
around the exterior.

Images credit: M. Escher, Krioukov et al.



Examples and Implications

0=0 0=0 d = Vn-1 d=n/4

Warning: Low hyperbolicity doesn’t imply traditional sparsity!

Algorithms for graph classes of bounded hyperbolicity often exploit
computable approximate distance trees (Chepoi et al) or greedy

routing (Kleinberg).

Work of Narayan/Saniee and Jonckheere et al conjectures that some
of the observed congestion in real-world networks may be due to
their negative curvature (hyperbolicity).



Sparsity 1.2: Bounded Treewidth (tree-like structure 2)

* A graph class G has bounded treewidth if every graph has a tree
decomposition of width at most c.

Usefulness: Most algorithms which are polynomial-time on trees can
be extended to work in poly-time on bounded treewidth (pay an
exponential factor in terms of the width)



Nowhere dense

A Hierarchy of Sparsity
€
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Sparsity 3.0: Bounded Expansion

* A graph class G has bounded expansion if every r-shallow
(topological) minor has density at most f(r).

.(G) = max ‘2L g (G) := sup V,.(G) < f(r)

HeGVr |V(H)| GegG

Note: Algorithms don’t require knowing f{(r).




Aside: Parameterized Complexity

* NP: solvable with non-deterministic Turing machine
* XP: has an O(n®) algorithm.

* FPT: has an f(k)n°® algorithm.

R-COLORABILITY
NP PARA-NP {/h'CUQUE

XP R-VERTEX COVER

thw‘”‘



FPT Algorithms & Graph Structure: Pros & Cons

Lots of problems become FPT:

* STEINER TREE (bounded degeneracy) * SUBGRAPHISOMORPHISM (bounded expa
* DOMINATINGSET (bounded genus) * MAXWIS (bounded treewidth)

And there are meta-theorems!

* FO-model checking on nowhere-dense graphs* (k = formula size)

* EMSO-model checking parameterized by treewidth

BUT

Real-world networks might not fall into any of these categories!
Worse, it’s hard to test membership & many existing results are negative

The algorithms often have [huge] hidden constants

*Recall, this was broadest class. And lots of problems are expressible in FO-logic.



How do we know if real networks
have these fancy variants of sparsity?



Connecting with) the dots
* Challenge: instances vs. classes
* Goal: classify networks by their features/characteristics

* Typical Approach: find randomized models that match
desired features — use these to represent the class
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A bit of bad news
Bounded Edge Density:
* Holds in practice, but doesn’t speed up many algorithms

Bounded Degree:
* Erdos-Renyi - O(log n)
* Molloy-Reed [depends on specified degree sequence]

* Random Intersection Graphs (a < 1)

Bounded Treewidth:
* Erdos-Renyi - O(n) [Gao, 2009]
* Barabasi-Albert —O(n) [Gao, 2009]

* Empirical evidence on real data [Adcock et al, 2013]



Related work: A Plethora of New Classifications!

[with Demaine, Reidl, Rossmanith, Sanchez Villaamil, Sikdar; 2015+]

Bounded expansion

Somewhere dense

* Includes configuration with households (high clustering) & inhomogenous random graphs.

Heavy-tailed degree distribution

r Y >
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Perturbed Stochastic _
bounded degree Block Kleinberg
- © =
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Today’s focus: Random Intersection Graphs

* Introduced by Karonski, Scheinerman, Singer-Cohen in the late g9o’s.

* Model collaboration graphs (from arXiv), affiliation groups, etc.

- Let n be the number of nodes and a, B, y be constants.

- Setm =8n“%, B a bipartite graph with parts U,V of size n and m, respectively.

- Forevery pairvinUand vinV, add the edge (u,v) with probability p = yn-®*®/2,
- More generally, the inhomogenous model allows p to depend on the attribute.

» ?

» 3

@ » ® o

RIG(n,m,p) is the graph on U ~ - ®
where v, and u, are adjacentiff  $ . o %o,
there exists vinV so that s > __ “>

® 7 3 » *
(u,,v) and (u,,v) are edges of B. - o o ® o

g °o
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e.g. Newman’s Network Science

Drawn from Physical Review Publications: 1893-2009




Random Intersection Graphs
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RIG Results!



Degeneracy & Expansion

Theorem: RIG(n, m, p) has degeneracy:
Q(yn**2)ywhena <1
Q(log n/log log n) when o =1 and
O(1) when a > 1.

Theorem: For a <1, w.h.p. RIG(n, m, p) is somewhere
dense (contains arbitrarily large cliques as shallow
minors), and thus not bounded-expansion.

Theorem: For a > 1, w.h.p. RIG(n,m,p) has bounded
expansion.

All results on this page were proved w.h.p. (with high probability):
for any ¢ > 1 the event occurs with probability at least 1 - f (¢)/n< for large enough n.



(non-) Hyperbolicity

Theorem: Under reasonable restrictions on B and y, a.a.s.
RIG(n, m, p) has hyperbolicity Q(log n) for all values of a.

Proof Sketch: '

We extend the method of Narayan et al for ER graphs, 1 /.\‘ .
and randomly “expose” a large enough fraction of the

vertices to w.h.p. contain a giant component. We prove * e i
there is an induced path in the “hidden” portion of y 5

length proportional to log n whose internal vertices

have no other neighbors in the graph and whose

endpoints lie in the giant component of the exposed .
graph. It then follows that there is a cycle formed using

this “*handle” (path) which cannot have shortcuts, and .
thus delta is at least k/4.

Note this is "only” a.a.s. (asymptotically almost surely):
probability of event tends to one in the limit.



Shameless Plug

We’re Hiring!

Postdoc positions available!
3-5 openings likely in 2015-2020.

Know a great undergrad?

Encourage them to apply to NC State
CSC and list me as faculty they're
interested in working with!



