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Mathema4cal	models	of	targeted	cancer		
therapies	and	drug	resistance	

1.	Treatment	of	chronic	lymphocy4c	leukemia	with	targeted	drugs,	
and	the	evolu4on	of	drug	resistance	
	
	
2.	Spa4al	dynamics	of	virus	spread,	and	the	treatment	of	cancers	
with	onlcoly4c	viruses	–	determinants	of	cellular	resistance	



Chronic	Lymphocy4c	Leukemia	(CLL)	

•  most	common	type	of	leukemia	

•  accumula4on	of	small	B	lymphocytes	with	mature	appearance	
	
•  most	pa4ents	are	diagnosed	without	symptoms	during	rou4ne	blood	tests	

•  Upon	diagnosis,	a	“wait	and	see”	approach	is	followed.	



Cells	of	origin	

Res4ng	B	cell	becomes	
ac4vated	by	pathogen	

Ac4vated	B	cell	proliferates	
and	secretes	an4body	



Risk	factors	and	heterogeneity	

“mutated”	
beAer	prognosis	

“unmutated”	
worse	prognosis	



Risk	factors	and	heterogeneity	

del	13q:	Dele4on	of	long	arm	of	chromosome	13,	is	the	most	common		
													abnormality	(50%).	Best	prognosis,	some	never	need	treatment	
	
Trisomy	12:	20-25%	of	pa4ents,	have	intermediate	prognosis	
	
del	11q:	Dele4on	of	long	arm	of	chromosome	11,	rela4vely	poor	prognosis,	because	
													dele4on	targets	the	ATM	gene.		Occurs	in	5-10%	of	cases	
	
del	17p:	dele4on	of	part	of	short	arm	of	chromosome	17.	Poorest	prognosis	because	
													it	inac4vates	p53.	(5-10%	of	cases)	
	



Therapy		

up	to	2014,	the	standard	was	“chemo-immunotherapy”	
ineffec4ve	against	more	virulent	cases,	e.g.	del	17p	or		
unmutated	CLL	
	
	
Targeted	treatment	approaches	have	emerged.	
	
	
	



Ibru4nib	
•  First	Bruton	tyrosine	kinase	(BTK)	inhibitor	
	
•  acts	via	specific	binding	to	a	cysteine	
					residue	in	the	BTK	kinase	domain	
	
•  inhibits	BTK	phosphoryla4on	and	its	enzyma4c	
				ac4vity	
	
•  Clinically	ac4ve	through:	

	induc4on	of	cell	death	
	inhibi4on	of	prolifera4on	
	inhibi4on	of	4ssue	homing		

	
	



CLL	response	to	Ibru4nib	in	previously	treated	pa8ents		
(	treatment	start	at	day	0)	

Every	pa4ent	shows	a	temporary	phase	of	lymphocytosis,	where	the	number	of		
CLL	cells	in	blood	increases	up	to	a	peak,	before	eventually	declining.			
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Reasons	for	lymphocytosis:	Compartments	



Reasons	for	lymphocytosis:	Compartments	

Blood	

Division	and		growth,		
most	cells	here	
=>Microenvironment	

No	division	and	growth	
small	frac4on	
of	tumor		

Tissues,	such	as	
lymph	nodes,	
spleen,	bone	
marrow	 Homing	



Ibru4nib	

Division	and		growth,		
most	cells	here	
=>Microenvironment	

No	division	and	growth	
small	frac4on	
of	tumor		

		

Reasons	for	lymphocytosis:	Compartments	

Tissues,	such	as	
lymph	nodes,	
spleen,	bone	
marrow	

Blood	Redistribu8on	



2	possible	scenarios	for		
how	ibru4nib	affects	cells	in	those	

compartments	



Ibru4nib	

Scenario	1:	death	“by	neglect”	in	blood	
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Ibru4nib	

Scenario	1:	significant	cell	death	in	4ssue	
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What	does	this	lymphocytosis	mean?	

-	Drug	simply	causes	cells	to	
			shid	compartment	
-	This	lead	to	“death	by	neglect”	
			in	blood	
=>	Less	effec4ve	drug	

Drug	causes	significant	cell	death	in	4ssue	
Only	a	minority	of	tumor	redistributes	to	blood	
	
=>	More	effec4ve	drug	

To	answer	ques8on:	
apply	mathema4cal	models	to	
	clinical	data	in	order	to		
measure	kine4c	parameters	



Mathema4cal	model	

We	considered	a	two-compartment	model	for	CLL	dynamics:	

Tissue	 Blood	

division	

death	

redistribu4on	

homing	

death	



Mathema4cal	model	

Treatment:	

Tissue	 Blood	

division	

death	

redistribu4on	

homing	

death	



Mathema4cal	model	

m	=	rate	of	redistribu4on	
	
d1=	CLL	cell	death	rate	in	4ssue	
	
d2	=	CLL	cell	death	rate	in	blood	
	
c	=	factor	to	account	for	the		
						observa4on	that	CLL	cells	
						stabilize	at	low	levels	in	the	
						long	term	
	
nodal	response	rate:	α=m+d1	

idea:	fit	model	to	treatment	
								data	and	es4mate	the		
								parameters	



Model	

Aims:		
	
•  es4mate	crucial	parameters	

•  calculate	the	percentage	of	pre-treatment	4ssue	tumor	burden	
				that	redistributes	into	the	blood		



Model	

Rela4ve	number	of	cells	redistributed	from	4ssue	to	blood:	

Tumor	stabilizes	due	to	parameter	c	
	
this	phase	is	not	interes4ng.	Here	Z	grows	linearly		
in	4me	because	of		remaining	equilibirum	level	of		
CLL	cells	in	4ssue	

cutoff	
4me	



Model	fihng	
Model	contains	2	variables:	

cells	in	blood	=>	absolute	lymphocyte	counts	

cells	in	4ssues	



Model	fihng	
Model	contains	2	variables:	

cells	in	blood	=>	absolute	lymphocyte	counts	

cells	in	4ssues	



Volumetric	Analysis	of	4ssue	tumor	burden	

Volumetric analyses of CLL lymph node and 
spleen manifestation (A) before  and (B) during 
therapy with ibrutinib.  

 

Depicted are CT images from a representative 
CLL patient from our series with superimposed 
reconstruction of main areas of CLL 
involvement, highlighted in color. The volumes 
of the axillary (red), intra-abdominal (blue), 
inguinal (purple) and spleen (green, yellow) 
disease manifestations are displayed next to 
each involved area.  

Volumetric	analysis	done	for	3	4me	points:	one	before	treatment,	two	during	treatment	
	
(bone	marrow	burden	difficult	to	measure	=>	parameter	es4mates	are	lower	bounds	)	



Model	fihng	
Model	contains	2	variables:	

cells	in	blood	=>	absolute	lymphocyte	counts	

cells	in	4ssues	



Fihng	



Parameter	Es4mates	

d2 = death rate of CLL cells in blood; 

d1 = death rate of CLL cells in tissue; 

m = rate of redistribution of tissue cells to blood; 

α  = overall nodal decline rate, i.e. rate at which cells disappear 
from the tissue due to redistribution + death, i.e. α=m+d1;.

  
x0 = total body number of CLL cells in tissue; 

y0 = total body number of CLL cells in blood; 

% redistr =  % of pre-treatment tissue tumor burden that is 
redistributed. 

  



Death	rates	

In	4ssue:	d1=	0.027	±	0.01	days-1		

2.7%	±	0.99%	of	the	cells	die	per	day	in	4ssue	
	

In	blood:	d2	=	0.017	±	0.012	days-1	
	
1.7%	±	1.1%	of	the	cells	die	per	day	in	the	blood	
	

Important	message:	Higher	death	rate	in	8ssue	than	in	blood	



Compare	to	death	rate	in	absence	of	treatment	

In	4ssue:	d1=	0.027	±	0.01	days-1		

2.7%	±	0.99%	of	the	cells	die	per	day	in	4ssue	
	

In	blood:	d2	=	0.017	±	0.012	days-1	
	
1.7%	±	1.1%	of	the	cells	die	per	day	in	the	blood	
	

Previous	es4mate	in	the	absence	of	treatment:	
	
0.5%	of	cells	died	per	day		

treatment	increases	
death	rate	3-fold	

treatment	increases	
death	rate	5-fold	



Death	rates	vs	redistribu4on	rate	

In	4ssue:	d1=	0.027	±	0.01	days-1		

2.7%	±	0.99%	of	the	cells	die	per	day	in	4ssue	
	

In	blood:	d2	=	0.017	±	0.012	days-1	
	
1.7%	±	1.1%	of	the	cells	die	per	day	in	the	blood	
	

Redistribu8on	rate:	m	=	0.008	±	0.005	days-1	
	

		

Important	message:	Redistribu8on	rate	significantly	smaller	than	death	rates	
																																						i.e.	redistribu8on	not	main	effect	of	drug	



Death	rates	vs	redistribu4on	rate	

In	4ssue:	d1=	0.027	±	0.01	days-1		

2.7%	±	0.99%	of	the	cells	die	per	day	in	4ssue	
	

In	blood:	d2	=	0.017	±	0.012	days-1	
	
1.7%	±	1.1%	of	the	cells	die	per	day	in	the	blood	
	

Redistribu8on	rate:	m	=	0.008	±	0.005	days-1	
	

	
The	percentage	of	the	4ssue	CLL	cell	popula4on	that	was	re-distributed		
into	the	blood	was		23.3	±	17%.		-	rela8vely	small	frac8on	



Conclusion	#1	

•  Ibru4nib	kills	cells	in	4ssues	at	significant	rate		

•  Not	just	death	by	neglect	

	



del	13q:								good	response	with	chemo-immunotherapy	
	
Trisomy	12:	intermediate	response	with	chemo-immunotherapy	
	
del	11q:							intermediate	response	with	chemo-immunotherapy	
	
del	17p:							ineffec4ve	response	with	chemo-immunotherapy	

Heterogeneity	in	treatment	responses	
=>	correla4on	with	gene4c	risk	factors?	



del	13q:								good	response	with	chemo-immunotherapy	
	
Trisomy	12:	intermediate	response	with	chemo-immunotherapy	
	
del	11q:							intermediate	response	with	chemo-immunotherapy	
	
del	17p:							ineffec4ve	response	with	chemo-immunotherapy	

Heterogeneity	in	treatment	responses	
=>	correla4on	with	gene4c	risk	factors?	

Mutated	CLL:						good	response	
	
Unmutated	CLL:	bad	response	



Heterogeneity	in	treatment	responses	
=>	correla4on	with	gene4c	risk	factors?	

•  Pa4ent	cohort	discussed	so	far	received	previous		
					chemo-immuno	therapy	
	
•  Repeat	analysis	with	a	treatment-naïve	pa4ent	cohort	
	
•  Compare	unmutated	CLL	(U-CLL,	more	virulent	type)	and	
					mutated	CLL	(M-CLL,	less	virulent	type).			



blood	lymphocyte	dynamics	during	therapy	in	U-CLL	and	M-CLL	
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Es4mated	4ssue	death	rates	

Some	pa4ents	have	4ssue	cell	death	rates	consistent	with	previous	cohort	(10-50	days	life-span)	
	
In	other	pa4ents	4ssue	cells	die	much	faster	(1-10	days	life	span)	
	
Significantly	faster	4ssue	cell	death	rates	are	observed	in	pa4ents	with	higher	risk	factors	(U-CLL)	
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M-CLL	

U-CLL	

average	4ssue	cell	death	rate:		
12.06±9.42%	

average	4ssue	cell	death	rate:		
28.88±11.33%	

sta4s4cally	significant		
difference,	p=0.0017	



Simulated	average	4ssue	dynamics	in	U-CLL	and	M-CLL	

1

10

100

0 100 200 300 400

days	

re
la
4v
e	
2D

	4
ss
ue

	si
ze
	

M-CLL	

U-CLL	



More	virulent	U-CLL	responds	faster	than	less	
virulent	M-CLL	
	
Need	to	re-evaluate	meaning	of	tradi4onal	risk	
factors	in	context	of	new	targeted	treatments	

Conclusion	#2	



Another	important	outcome	of	these	
studies:	

	
For	individual	pa4ents,	we	can	measure	kine4c	parameters		
that	characterize	the	response	to	ibru4nib.	
•  total	tumor	size	at	the	start	of	treatment	
•  4ssue	and	blood	cell	death	rates	during	treatment	
•  redistribu4on	rate	of	cells	from	4ssue	to	blood	

	
Pa4ent-specific	parameters	can	be	plugged	into	mathema4cal	
models	to	make	individualized	predic4ons	about	treatment	outcome	
	
	
=>	Towards	using	evolu4onary	theory	for	personalized	medicine	
	
	
=>	Explore	this	in	the	context	of	resistance	evolu4on	
	
		
		



We	can	also	measure	pa4ent-specific	
parameters	before	treatment	

Days	

log	
ALC	

exponen4al	growth:	
dx/dt		=	rx	-	dx	

•  dynamics	of	label	uptake	and		
						dilu4on	allows	you	to	es4mate		
						the	division	rate	of	cells,	r.	

•  knowing	the	overall	growth		
						rate	and	the	division	rate	of	cells		
						allows	us	to	es4mate	the	death		
						rate	of	cells	from	exponen4al		
						growth	rate,	d.	



Evolu4onary	Dynamics	of	Resistance	
against	ibru4nib	



Resistance	mechanisms	
Furman		et	al	2014	
Woyach	et	al	2014	
Sharma	et	al	2016	



Resistance	mechanisms	
Furman		et	al	2014	
Woyach	et	al	2014	
Sharma	et	al	2016	

Resistant	mutants	likely	neutral,	perhaps	slightly	advantageous	



Construct	and	parameterize	evolu4onary	mathema4cal	model		
and	ask	the	following	ques4ons:	
	
						
							1.		Can	we	predict	4me	of	resistance-induced	disease	relapse?	
	
							2.	If	predicted	relapse	4me	is	short,	can	we	suggest	approaches	to	prolong	it?		
	
		



Mathema4cal	model	–	stochas4c	birth	death	
process	

cancer cell 



Mathema4cal	model	
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Mathema4cal	model	–	growth	phase	
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i.e. division rate > death rate 
 
-> Clonal Expansion 



Mathema4cal	model	–	treatment	phase	
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L <  D,  
 
i.e. division rate < death rate 
 
-> Exponential Decline 



Principles	of	model	

time 

treatment pre-treatment 
N 

(ii) with resistance 



Parameters	values	for	individual	pa4ents	

Problem:	we	have	a	limited	number	of	pa4ents	in	our	cohort	



Solu4on:	Virtual	pa4ents	

	A	popula4on	of	1000	ar4ficial	“pa4ents”	is	simulated	with	parameters	randomly		
drawn	from	the	clinically	available	bounds	
	



First	Important	Ques4on	

What	are	the	chances	that	resistant	mutants		
are	already	present	at	the	8me	when	treatment	
Is	started?	
	

treatment pre-treatment 
N 



Answer:	Resistant	mutants	are	almost	certainly	
present	before	the	start	of	therapy	

Number	of	CLL	cells	in	4ssue	is	
1012-1013	
	

Muta4on	rate	is	10-9-10-8	
	

Probability	of	having	a	mutant	in	a	
colony	at	detec4on	
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Clinical	confirma4on	of	theory	



Next	Ques4on	

Given	that	mutants	pre-exist	at	start	of	therapy,		
can	we	predict	how	long	it	takes	for	them	to	grow	
sufficiently	to	cause	relapse?	
	
	
•  Predict	the	average	number	of	mutants	at	treatment	start.	
	
•  Predict	how	long	it	takes	them	to	reach	detectable	levels.	



Growth	dynamics	of	resistant	mutants:	
Heterogeneity	of	(virtual)	pa4ent	popula4ons	

	
	
• 	Although	resistance	is	predicted	to	be	present	with	certainty,	its	dynamics	are	
very	different	for	different	pa4ents	

• 	The	only	variables	are	CLL	growth	rates	and	popula4on	size	at	detec4on	
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Each	line	shows	the	average	growth	trajectory	
for	a	given	parameter	combina8on	(i.e.	for	an	
individual	virtual	pa4ent)		



Do	average	growth	trajectories	
provide	meaningful	informa4on?	

	
• 	For	a	par4cular	pa4ent	(a	par4cular	parameter	combina4on),	growth	of	CLL			
			cells	is	a	stochas4c	process.		

• 	How	wide	are	the	varia8ons	within	one	parameter	set?		

• 	Can	we	use	mean	numbers	as	guidance?	



Do	mean	numbers	provide	meaningful	
informa4on?	

(a)	Number	of	mutants	present	at	start	of	treatment:	large	varia8on	



Do	mean	numbers	provide	meaningful	
informa4on?	

(b)	Time	un8l	resistance	is	detected:	small	varia8on		

this	is	the	clinically	important	quan4ty	



Do	mean	numbers	provide	meaningful	
informa4on?	

For	a	par4cular	pa4ent,	if	the	parameters	
are	known,	we	can	reliably	predict	the	

4me	un4l	disease	relapse		
(from	a	mathema4cal	standpoint).		



Predic4ons	about	4me	of	disease	relapse	

Timing	 %	pa8ents	

Resistance	
before	2	years	

6%		

Resistance	
before	5	years	

46%		

Resistance	
before	10	years	

75%		

No	resistance	
ader	30	years	

5%		

Standard	Ibru4nib	therapy	

Mean	4me	to	resistance	genera4on	is	9	years	if	resistant	mutants	are	neutral	
	
or	5	years	if	they	are	slightly	advantageous	



Personalized	predic4on	

measure	kine4c	parameters	in	individual	pa4ent	
	
	
predict	how	long	ibru4nib	monotherapy	can	maintain	control	
	
	

Long	4me,	e.g.	>	10	years	
=>	therapy	ok	

Short	4me,	e.g.	1	year	
=>	inbru4nib	monotherapy	is		
						insufficient	
=>	other	approaches	needed.		



Personalized	predic4on	

measure	kine4c	parameters	in	individual	pa4ent	
	
	
predict	how	long	ibru4nib	monotherapy	can	maintain	control	
	
	

Long	4me,	e.g.	>	10	years	
=>	therapy	ok	

Short	4me,	e.g.	1	year	
=>	inbru4nib	monotherapy	is		
						insufficient	
=>	other	approaches	needed.		



Personalized	improvement	of	therapy	

Can	we	use	the	model	to	iden4fy	treatment	approaches	
to	prolong	ibru4nib-mediated	control	of	the	disease?	



Possible	strategies	to	overcome	resistance	

	
• 	Early	treatment	(treat	upon	diagnosis,	not	watch	&	wait)	
	
• 	Combining	2	tyrosine	kinase	inhibitors	(toxicity	might	be	problema4c)	

• 	“Debulking”	=	first	use	chemo-immunotherapy,	followed	by						
				ibru4nib	

	

	



Possible	strategies	to	overcome	resistance	

	
• 	Early	treatment	(treat	upon	diagnosis,	not	watch	&	wait)	
	
• 	Combining	2	tyrosine	kinase	inhibitors	(toxicity	might	be	problema4c)	

• 	“Debulking”	=	first	use	chemo-immunotherapy,	followed	by						
				ibru4nib	

Can	resistance	be	prevented	by	any	of	these	approaches?	
=>	according	to	calcula4ons,	resistance	cannot	be	prevented		
	

	



Debulking	before	ibru8nib:	while	it	is	not	likely	to	prevent		
occurrence	of	resistant	mutants,	can	it	delay	relapse?	



Predic4ons	

Timing	 %	pa8ents	

Resistance	
before	2	years	

6%		

Resistance	
before	5	years	

46%		

Resistance	
before	10	years	

75%		

No	resistance	
ader	30	years	

5%		

Standard	Ibru4nib	therapy	 “Debulking”	by	a	factor	of	1/100	

Debulking	prior	to	ibru4nib	can	significantly	delay	the	4ming	of	relapse	



Conclusions	
•  Used	math	+	clinical	data	to	es4mate	pa4ent-specific	parameters	

•  Calculated	that	ibru4nib	causes	significant	amounts	of	cell	death	in	4ssue,		
						rather	than	just	causing	redistribu4on	of	tumor	cells	from	4ssue	to	blood	
	
•  Determined	that	risk	factors	that	dis4nguished	responsive	/	non-responsive	pa4ents	
						in	chemotherapy	treatment	might	have	to	be	re-evaluated	in	the	context	of	ibru4nib	
	
•  Developed	an	evolu4onary	theory	framework	to	make	pa4ent-specific	predic4on	about	
					therapy	outcomes,	and	to	compute	treatment	strategies	to	improve	outcome	
	
	
	
=>	Test	model	predic4ons	against	clinical	data	
=>	Explore	mathema4cally	in	more	detail	how	treatment	can	be	improved	further	
=>	Design	clinical	trial	that	is	based	on	the	mathema4cal	and	evolu4onary	founda4ons.	



Spa4al	dynamics	of	virus	spread	–		
oncoly4c	viruses	

2017	

2012	

2012	



Experimental	system:	Adenovirus	AdEGFPuci	growing	on	293	cells		

•  Virus	related	to	well-established	oncoly4c	vitus	ONYX-015	

•  Virus	is	labeled	with	green	fluorescent	protein	so	we	can	not	only	track	numbers	
						of	infected	cells,	but	also	spa4al	paAerns.	
	
•  Cells	are	spa4ally	arranged	such	that	a	source	cell	is	most	likely	to	transmit	virus	
						to	directly	neighboring	target	cells	(2D).	
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						of	infected	cells,	but	also	spa4al	paAerns.	
	
•  Cells	are	spa4ally	arranged	such	that	a	source	cell	is	most	likely	to	transmit	virus	
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Experiments:	follow	individual	infec4on	foci	

Hofacre	et	al	2012,	Virology	



2	types	of	growth	paAerns	observed	

Tradi4onal	plaque	or	“ring”	or	“robust	growth		
	
“diffuse	growth	paAern”	or	“limited	growth”		
	
	
	

Longer-term	growth	paAerns	



Robust	growth		/	Ring	structure	

Limited	/	Diffusive	growth	

Wodarz	et	al	2012,	PLoS	ComputaKonal	Biology	



How	can	such	growth	paAerns	be	
explained?	

=>	We	turn	to	a	stochas4c,	agent-based	computa4onal	model	



Agent-based	model	



Model	/	Data	

faster	viral	replica4on	rate,	longer	life-span	of	infected	cells	



Model	/	Data	

slower	viral	replica4on	rate,	shorter	life-span	of	infected	cells	



Further	complexi4es	



According	to	the	model,	the	different	spa4al	paAerns	can	be	
brought	about	differences	in	parameters	
	
But	experiments	indicate,	the	the	situa4on	is	more	complex		

Different	paAerns	are	observed	
in	same	culture,	i.e.	same	
virus-cell	combina4ons,	and	
iden4cal	experimental		
condi4ons.	
	
about	50%	ring	structure	
												50%	disperse	pa]ern	



Why?	



Exploring	possible	mechanisms:	
	
1.	Race	between	virus	and	an4viral	factors	(interferon)		

With	AdEGFPuci	infec4on	of	293	cells,	data	indicate	that	a	limited	an4-viral	state	is		
induced	in	cells.		
	

virus	

interferon	

Suscep4ble	cell	

Cell	in	an4viral	state	

Rodriguez-Brenes	et	al	2017,	PLoS	ComputaKonal	Biology	



Experimental	test:	Inhibi4ng	interferon	
increases	%	robust	growth	



Inhibi4ng	interferon:	increases	%	robust	



Inhibi4on	of	interferon	increases	the	percentage	of	robust	infec4ons.	
	
	
Hypothesis:		
	
•  Ini4al	race	between	virus	spread	and	the	spread	of	an4viral	state	explains	
						occurrence	of	limited	and	robust	spread	in	same	dish		
	
•  Stochas4c	effects	determine	whether	the	an4viral	response	wins	(limited	spread)	
					or	whether	the	virus	wins	(robust	spread)	



Inhibi4on	of	interferon	increases	the	percentage	of	robust	infec4ons.	
	
	
Hypothesis:		
	
•  Ini4al	race	between	virus	spread	and	the	spread	of	an4viral	state	explains	
						occurrence	of	limited	and	robust	spread	in	same	dish		
	
•  Stochas4c	effects	determine	whether	the	an4viral	response	wins	(limited	spread)	
					or	whether	the	virus	wins	(robust	spread)	
	
	

	
=>	Test	this	hypothesis	with	mathema0cal	models	
	



Start:	Non-spa4al	model	for	analy4cal	tractability	(ODEs)		

Move	to:	Spa4al	“metapopula4on	models,	based	on	the	ODEs	

Finally:	Spa4al,	agent-based	model	that	tracks	individual	cells	



What	model	proper4es	are	needed	to	see	different	
outcomes	under	iden4cal	condi4ons?	

I	many	models,	for	a	given	set	of	parameters,	the	system	always	converges	to	the	same	
outcome,	no	maAer	what	the	ini4al	popula4on	sizes	are:	
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Need	bistability	and	dependence	on	ini4al	condi4ons	in	
model	to	explain	data	
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2	curves	with	same	parameters	
but	different	ini4al	virus	popula4ons	
sizes.	

separatrix	



Effect	of	stochas4city	
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2	curves	with	same	parameters	
and	same	ini4al	virus	popula4ons	
sizes.	

separatrix	



An	ODE	model	with	cells	in	an	an4viral	state	
x1:	suscep4ble	cells																																			y1:	infected	cells	
	
x0:		cells	in	an4viral	state	
	

infec4on	

cell	in	an4-viral		
state	

no	virus	produc4on		
due	to	an4-viral	
state	

suscep4ble	cell	

infec4on	



An	ODE	model	with	cells	in	an	an4viral	state	
x1:	suscep4ble	cells																																			y1:	infected	cells	
	
x0:		cells	in	an4viral	state	
	

no	par8cularly	interes8ng	dynamics		
observed.	No	bistability.	
	
=>	race	between	spread	of	virus		
						and	an8-viral	state	alone	
						cannot	explain	our	data!!!	
	
We	can	reject	this	hypothesis	

infec4on	

cell	in	an4-viral		
state	

no	virus	produc4on		
due	to	an4-viral	
state	

suscep4ble	cell	

infec4on	



Despite	experimental	indica4ons,	race	between	
virus	spread	and	the	spread	of	an	IFN-induced	
an4viral	state	cannot	explain	the	data.	
	
Need	addi4onal	components	
	
	



So	let’s	add	some	more	complexity	
•  Mul4ple	infec4on	and	increased	replica4on	kine4cs	



Addi4onal	assump4on:	Increased	replica4on	kine4cs	in	
mul4ply	infected	cells	can	saturate	the	an4viral	state	

	
virus	 An4viral	factors	

Mul4ple	infec4on	/	fast	replica4on	kine4cs	 Single	infec4on	/	slow	replica4on	kine4cs	



Add	mul4ple	infec4on,	and	assume	that	mul4ple	
infec4on	can	overcome	an4-viral	state	

infec4on	

cell	in	an4-viral		
state	

no	virus	produc4on		
due	to	an4-viral	
state	

infec4on	

mul4ple	infec4on	overcomes	
an4-viral	state,	leading	to		
produc4ve	infec4on	



Add	mul4ple	infec4on,	and	assume	that	mul4ple	
infec4on	can	overcome	an4-viral	state	

infec4on	

cell	in	an4-viral		
state	

no	virus	produc4on		
due	to	an4-viral	
state	

infec4on	

mul4ple	infec4on	overcomes	
an4-viral	state,	leading	to		
produc4ve	infec4on	

	
=>	Now,	model	properKes	depend	on	iniKal	condiKons!!!	



Bistability,	and	extensions	to	stochas4c	dynamics	

=>	a	start	to	explaining	how	such	different	dynamic	can	be	observed	under	indenKcal	
						condiKons,	in	the	same	dish	

determinisKc	differenKal	equaKons;	
same	parameters	
different	iniKal	condiKons	

stochasKc	Gillespie	simulaKons	of	
differenKal	equaKons;	
same	parameters	
same	iniKal	condiKons	



Inhibi4ng	interferon	in	the	model	
increases	frac4on	of	robust	infec4ons	



Simplest	spa4al	model	
metapopula4ons	

mass-
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dynamics	
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dynamics	
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dynamics	

mass-
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dynamics	
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dynamics	

migra4on	of	popula4ons	to		
nearest	neighboring	patches	



Simula4ons	of	metapopula4on	model	



Inhibi4ng	interferon	
increases	frac4on	of	robust	infec4ons	
in	metapopula4on	model	as	well	



Finally	back	to	agent-based	model	



These	models	tell	us	that	a	combina4on	of	
	
(i)  Interferon-based	an4-viral	state	induc4on		
(ii)  satura4on	of	an4-viral	state	due	to	mul4ple	infec4on	

can	explain	our	experimental	data	
	
	
•  Mathema4cal	models	enabled	us	to	reject	experimentally	supported	

hypothesis	that	IFN-induced	an4-viral	state	alone	can	explain	the	data	
	
•  The	models	further	enables	us	to	propose	an	addi4onal	mechanism	that	

can	contribute	to	explaining	the	data	

•  Further	experiments	needed	for	tes4ng	=>	new	collabora4on	with	ASU	on	
myxoma	virus	in	a	similar	sehng	and	beyond	

	
	
	
	

Model	Conclusions	
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