

Null-Space Based Preconditioners for Saddle-Point Systems

Chen Greif

The University of British Columbia
Vancouver
Canada

SIAM Applied Linear Algebra
October 26–30, 2015

Joint Work With Ron Estrin

Saddle-Point Systems

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}$$

$$A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{m \times n}, \ x, f \in \mathbb{R}^n, \ y, g \in \mathbb{R}^m.$$

- A and B are sparse and large; $m < n$ (may have $m \ll n$).
- Central assumption: A has nullity m (i.e., $\text{rank}(A) = n - m$), and the saddle-point matrix is nonsingular. We say that A is *maximally rank deficient*.
- A corollary: B has full row rank, i.e., $\text{rank}(B) = m$.
- We will assume symmetry of A throughout but this is not a strict requirement.

Highly Rank Deficient Leading Block

- Time-harmonic Maxwell
- Norm Minimization with Equality Constraints
- Interior-point methods (depends on the number of active constraints at the solution)
- Vorticity/Curl formulations of the Stokes equations
- Geophysical inverse problems
- Insert your problem here...

Formulas for the Inverse

Benzi, Golub, Liesen (2005), Section 3:

A formula based on the Schur complement:

$$\mathcal{K}^{-1} = \begin{pmatrix} A^{-1} - A^{-1}B^T S^{-1} B A^{-1} & S^{-1} B^T A^{-1} \\ A^{-1} B S^{-1} & -S^{-1} \end{pmatrix},$$

where $S = BA^{-1}B^T$.

A formula based on null spaces (invertibility of A not required):

$$\mathcal{K}^{-1} = \begin{pmatrix} V & (I - VA) B^T (BB^T)^{-1} \\ (BB^T)^{-1} B (I - AV) & (BB^T)^{-1} B (A - AVA) B^T (BB^T)^{-1} \end{pmatrix}$$

where

$$V = Z (Z^T A Z)^{-1} Z^T,$$

and Z is a basis for the null space of B : $BZ = 0$.

The Surprising Nonzero Structure of the Inverse When $\text{null}(A) = m$

Not quite fully dense...

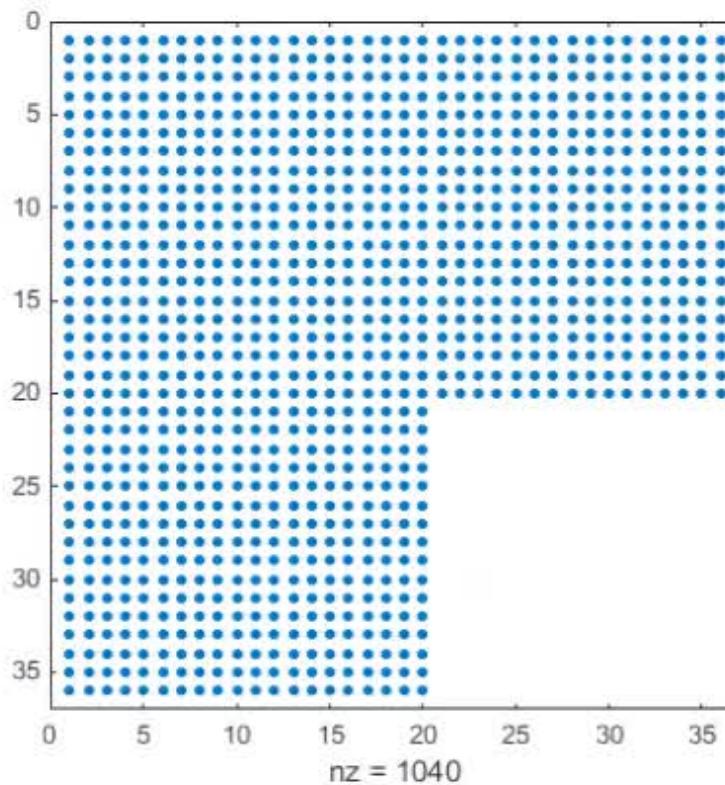


Figure: The inverse has a saddle-point form.

Rank Structure of the (2,2) Block

Theorem

If A be symmetric positive semidefinite with $\text{null}(A) = r \leq m$,

$$\mathcal{K}^{-1} = \begin{pmatrix} * & * \\ * & X \end{pmatrix},$$

where $X \in \mathbb{R}^{m \times m}$, and $\text{rank}(X) = m - r$.

Corollary

Let A be symmetric positive semidefinite with $\text{null}(A) = m$ and suppose \mathcal{K} is invertible. Then

$$\mathcal{K}^{-1} = \begin{pmatrix} * & * \\ * & 0 \end{pmatrix}.$$

Inverse of Augmented Lagrangian

Fletcher [1974]:

$$\mathcal{K}(W) := \begin{pmatrix} A + B^T W^{-1} B & B^T \\ B & 0 \end{pmatrix}.$$

Then if $\mathcal{K}(W)$ is nonsingular:

$$\mathcal{K}^{-1}(W) = \mathcal{K}^{-1}(0) - \begin{pmatrix} 0 & 0 \\ 0 & W^{-1} \end{pmatrix}.$$

- Works for nonsymmetric matrices and singular W too, [Golub & G. \[2003\]](#)
- Form of (1,1) block successfully used for preconditioning fluid flow problems, [Benzi and Olshanskii \[2006\]](#)
- Preconditioners for time-harmonic Maxwell, [G. & Schötzau \[2006\]](#)

Side Note: Optimal Conditioning for the Maximally Rank Deficient Setting

Quasi-direct sums (Fiedler [1981]):

Let $M, N \in \mathbb{R}^{n \times n}$, and let $\text{rank}(M) = r$, $\text{rank}(N) = n - r$, such that $M + N$ is nonsingular. Then we can perform a non-unitary simultaneous diagonalization:

$$M = P \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix} Q^T; \quad N = P \begin{pmatrix} 0 & 0 \\ 0 & T \end{pmatrix} Q^T,$$

and use this to minimize the condition number of \widehat{A} for $W^{-1} = \gamma I$, with $M = A$ and $N = \gamma B^T B$; requires knowledge (or estimates) of the extremal eigenvalues of A and the extremal singular values of B .

Schur Complement

The rank of the (2,2) block of the inverse and the inverse result just mentioned lead to:

Theorem

Suppose $\text{null}(A) = m$ and let $W \in \mathbb{R}^{m \times m}$ be an invertible matrix. Then

$$B \left(A + B^T W^{-1} B \right)^{-1} B^T = W.$$

A New Formula for the Inverse

Using the above results and the Helmholtz decomposition,

$$\ker(A) \oplus \ker(B) = \mathbb{R}^n,$$

we get

$$\mathcal{K}^{-1} = \begin{pmatrix} (A + B^T L^{-1} B)^{-1} (I - B^T L^{-1} C^T) & CL^{-1} \\ L^{-1} C^T & 0 \end{pmatrix},$$

where $AC = 0$, $L = BC$.

Preconditioners Based on the Null-Space of A

Inverse, again:

$$\mathcal{K}^{-1} = \begin{pmatrix} (A + B^T L^{-1} B)^{-1} (I - B^T L^{-1} C^T) & CL^{-1} \\ L^{-1} C^T & 0 \end{pmatrix}.$$

Two natural choices for preconditioners:

$$\mathcal{P}_1^{-1} = \begin{pmatrix} (A + R)^{-1} (I - B^T L^{-1} C^T) & CL^{-1} \\ L^{-1} C^T & 0 \end{pmatrix}.$$

$$\mathcal{P}_2^{-1} = \begin{pmatrix} (A + R)^{-1} & CL^{-1} \\ L^{-1} C^T & 0 \end{pmatrix}.$$

$R \approx B^T (BC)^{-1} B$ and $L \approx BC$, both symmetric and sparse.
(Not necessarily easy to find such matrices.)

Spectral Analysis

$$\mathcal{P}_1^{-1} = \begin{pmatrix} (A + R)^{-1} (I - B^T L^{-1} C^T) & CL^{-1} \\ L^{-1} C^T & 0 \end{pmatrix}.$$

$$\mathcal{P}_2^{-1} = \begin{pmatrix} (A + R)^{-1} & CL^{-1} \\ L^{-1} C^T & 0 \end{pmatrix}.$$

Theorem

The matrices $\mathcal{P}_1^{-1}\mathcal{K}$ and $\mathcal{P}_2^{-1}\mathcal{K}$ have eigenvalue 1 of algebraic multiplicity at least $2m$. In $\mathcal{P}_1^{-1}\mathcal{K}$, the eigenvalue 1 has geometric multiplicity at least $2m$ with eigenvectors of the form (Cy, u) where $u, y \in \mathbb{R}^m$. In $\mathcal{P}_2^{-1}\mathcal{K}$ the eigenvalue 1 has geometric multiplicity at least m with eigenvectors of the form $(Cy, 0)$.

Krylov Subspaces

- It is possible to show, for example, that if $RC = B^T$ then

$$\mathcal{P}_2^{-1}\mathcal{K} = \begin{pmatrix} (A + R)^{-1}(A + B^T L^{-1} B) & C \\ 0 & I \end{pmatrix}.$$

Krylov Subspaces

- It is possible to show, for example, that if $RC = B^T$ then

$$\mathcal{P}_2^{-1}\mathcal{K} = \begin{pmatrix} (A + R)^{-1}(A + B^T L^{-1} B) & C \\ 0 & I \end{pmatrix}.$$

- If $RC = B^T$ and f is divergence-free, can use \mathcal{P}_2 as a preconditioner for the Conjugate Gradient method. That is, can use CG for an indefinite preconditioner with an indefinite coefficient matrix.

Krylov Subspaces

- It is possible to show, for example, that if $RC = B^T$ then

$$\mathcal{P}_2^{-1}\mathcal{K} = \begin{pmatrix} (A + R)^{-1}(A + B^T L^{-1} B) & C \\ 0 & I \end{pmatrix}.$$

- If $RC = B^T$ and f is divergence-free, can use \mathcal{P}_2 as a preconditioner for the Conjugate Gradient method. That is, can use CG for an indefinite preconditioner with an indefinite coefficient matrix.
- Even better: if $RC = B^T$ and f is not divergence-free, can use \mathcal{P}_1 as a preconditioner for CG.
- Matrix-vector products with \mathcal{P}_1 are not much more expensive than with \mathcal{P}_2 .
- Potential limitation: need to know null-space of leading block (at least approximately), want it ideally sparse.

In Search of a Recipe

Theorem

Suppose Z is a null matrix of B , namely $BZ = 0$, and C is a null matrix of A . Then $R = B^T L^{-1} B$ if and only if R satisfies the conditions (i) $RZ = 0$, (ii) $RC = B^T$, and (iii) $R = R^T$.

An inf-sup like condition:

Theorem

If R satisfies $\|(A + R)^{-1} R u_B\| \leq \alpha$ for $\alpha < 1$ and $u_B \in \ker(B)$, then the eigenvalues λ of $\mathcal{P}_i^{-1} \mathcal{K}$, $i = 1, 2$, satisfy

$$1 - \alpha \leq \lambda \leq 1 + \alpha.$$

The condition $RZ = 0$ and its relaxed form primarily affect the distribution of the eigenvalues, whereas the conditions $RC = B^T$ and $R = R^T$ are needed in order to be able to potentially use CG.

A Numerical Illustration: Time-Harmonic Maxwell

The time-harmonic Maxwell equations with constant coefficients in lossless media with perfectly conducting boundaries:

$$\begin{aligned}\nabla \times \nabla \times \mathbf{u} - k^2 \mathbf{u} + \nabla p &= \mathbf{f} && \text{in } \Omega, \\ \nabla \cdot \mathbf{u} &= 0 && \text{in } \Omega, \\ \mathbf{u} \times \mathbf{n} &= 0 && \text{on } \partial\Omega, \\ p &= 0 && \text{on } \partial\Omega.\end{aligned}$$

\mathbf{u} is an electric vector field; p is a scalar multiplier.

$k^2 = \omega^2 \epsilon \mu$, where ω is the temporal frequency, and ϵ and μ are permittivity and permeability parameters.

Assume throughout small wave number: $k \ll 1$.

See Hiptmair, Monk,...

(Preconditioners based on augmented Lagrangian approach,
Schötzau & G. [2006])

Eigenvalues of Preconditioned Matrix

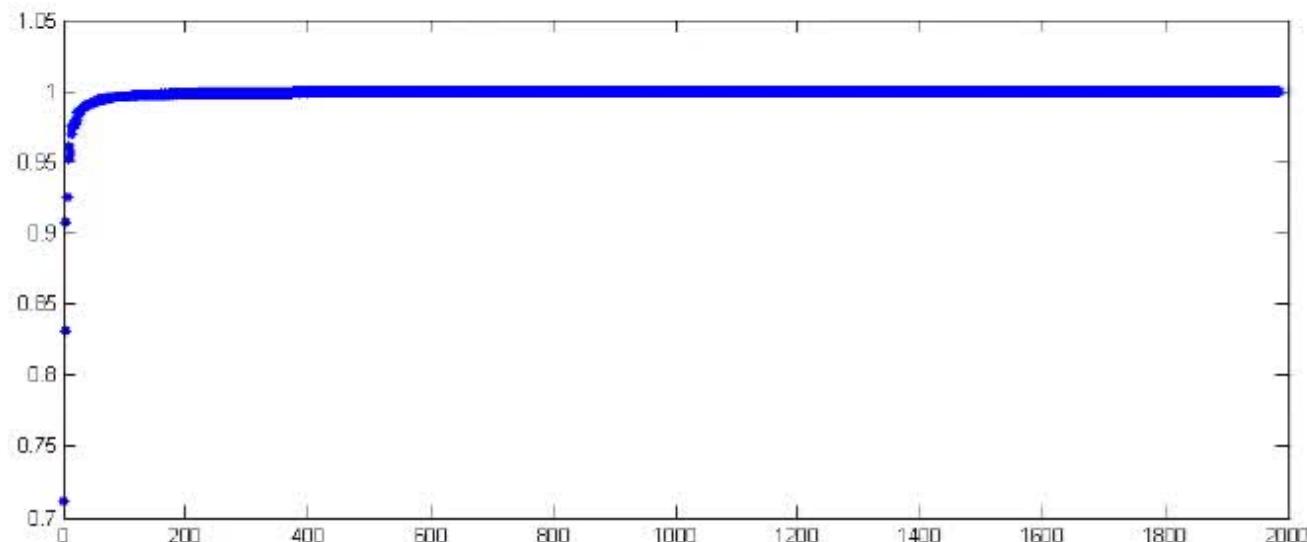


Figure: Eigenvalue distribution of the preconditioned matrix $\mathcal{P}_1^{-1}\mathcal{K}$ for the time-harmonic Maxwell problem.

A Numerical Illustration: Geophysical Inverse Problem

Thanks to Eldad Haber and Kristofer Davis.

$$\begin{aligned} \min \quad & \frac{1}{2} \|P^T u - d\|_{W_d}^2 + \frac{\alpha}{2} \|Lm\|^2 \\ \text{s.t.} \quad & F(m)u + Gm = f, \end{aligned}$$

where m is a model, L is a regularization operator (typically a discretized second order differential operator), and the forward problem $F(m)u + Gm = f$ is typically a second order differential equation; G is an averaging operator. P is an observation matrix, and W_d is the standard deviation.