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Saddle-Point Systems

‘_l E RIIXII. B 6 Rmxn. T. JC G Rn. !/. g 6 R'In.

@ A and B are sparse and large: m < n (may have m < n).

@ Central assumption: A has nullity m (1.e.. rank(A) =n — m).
and the saddle-point matrix is nonsingular. We say that A is
maximally rank deficient.

@ A corollary: B has full row rank. i.e.. rank(B) = m.

@ We will assume symmetry of A throughout but this is not a
strict requirement.
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Highly Rank Deficient Leading Block

Time-harmonic Maxwell

Norm Minimization with Equality Constraints
Interior-point methods (depends on the number of active
constraints at the solution)

Vorticity /Curl formulations of the Stokes equations

(Geophysical inverse problems

Insert vour problem here...



Formulas for the Inverse

Benzi. Golub. Liesen (2005). Section 3:
A formula based on the Schur complement:

g1 _ [ A1 —A"IBTST1BAT! §-1BTAT
- A-1ps-1 gl o

where S = BA-1BT.

A formula based on null spaces (invertibility of A not required):

e ( % (I —VA)BT (BBT)™ )

\ (BBT)7'B(I—-AV) (BBT)" B(A—AVA)BT (BBT)™
where
V=2(2TAz)"" 77,

and Z is a basis for the null space of B: BZ = 0.




The Surprising Nonzero Structure of the

Inverse When null(A) = m

Not quite fully dense...

0

....................................
....................................
....................................
....................................
D 90000 0000 00000000000 RNCONITEIIOCEOIOSIREIEOIOIEOIRSOEY RS-
....................................
...................................
....................................
....................................
10leesesccsscsscscssccsssscssscnsenses o
....................................
....................................
....................................
....................................
1S [0 000 0000000000l et ssssssssssosnoe o
....................................
....................................
....................................
....................................
20 L0 0000 0000 0000000000 RRROIRIEIRIRROIRNROIRETS O
....................
....................
....................
....................
25leseessssccssssssnsns
....................
....................
....................
....................
30 lececscssscssssscccee
....................
....................
....................
....................

35|eescsscccnsscscscsnnsee

Figure: The inverse has a saddle-point form.
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Rank Structure of the (2,2) Block

If A be symmetric positive semidefinite with null(A) =r < m.

BRI B
c=(2 1)

where X € R™*™, and rank(X) =m —r.

>

Corollary

Let A be symmetric positive semidefinite with nulll A) = m and
suppose K is invertible. Then

IR
s !

i
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Inverse of Augmented Lagrangian

Fletcher [1 f)T«l] :

i A+ BTw-1B BT
lC(U):z(B 0 )

Then if £(11) is nonsingular:

ibrars s 0 0
KYW) = K1(0) — ( i Tt )

@ Works for nonsymmetric matrices and singular W too.
Golub & G. [2003]

@ Form of (1.1) block successtully used for preconditioning fluid
flow problems, Benzi and Olshanskii [2006]

@ Preconditioners for time-harmonic Maxwell.
G. & Schotzau [2006]
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Side Note: Optimal Conditioning for the

Maximally Rank Deficient Setting

Quasi-direct sums (Fiedler [1981]):

Let M. N € R"™", and let rank(M) = r, rank(N) =n — r. such
that M + N is nonsingular. Then we can perform a non-unitary
simultaneous diagonalization:

N5 | "W 1 ) S
w=r(® Nar x-r(’ D)o

and use this to minimize the condition number of A for

W=t =~1I. with M = A and N = ~B' B; requires knowledge (or
estimates) of the extremal eigenvalues of A and the extremal
singular values of B.
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Schur Complement

The rank of the (2.2) block of the inverse and the inverse result
just mentioned lead to:

Suppose null(A) = m and let W € R™*™ be an invertible matriz.
Then

B(A+B™WB)" BT =W

4
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A New Formula for the Inverse

Usine the above results and the Helmholtz decomposition.
g I
ker(A) & ker(B) = R".
we get

e _ ((A+ BTL-1B) ™ (I — B¥LCT) €L
N L=T¢™ 0 /7

where AC =0, L = BC.




Preconditioners Based on the

Null-Space of A

Inverse. again:
O

o _ ((A+ BTL1B) (I - BYLCT) CL!
N LGt 0 )

Two natural choices for preconditioners:

D1 _ (A LR (T = BYLE Ty O
i B § F°

si o f AT EE
Py = ( EGE 0 '

R~ B"(BC)™'B and L ~ BC', both symmetric and sparse.
(Not necessarily easy to find such matrices.)
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Spectral Analysis

-1 _ (A4 By (T - BELYWT) ©L*
kT E 0 )

3  {ALRYyT CE
o= ( L-c” 0 )

The matrices P, K and Py 'K have eigenvalue 1 of algebraic
multiplicity at least 2m. In P;7'KC, the eigenvalue 1 has geometric
multiplicity at least 2m with eigenvectors of the form (Cy. u)
where u,y € R™. In Py 'K the eigenvalue 1 has geometric
multiplicity at least m with eigenvectors of the form (Cy.0).

g
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Krylov Subspaces

o It is possible to show. for example. that if RC' = B then

(A+ R)Y(A+BTL'B) C
0 Iy

B =




Krylov Subspaces

o It is possible to show. for example, that if RC' = B! then

_ A4+RYy YA+ BYL7IB) C

o If RC' = B' and f is divergence-free. can use Ps as a
preconditioner for the Conjugate Gradient method. That is.
can use CG for an indefinite preconditioner with an indefinite
coeflicient matrix.




Krylov Subspaces

o It is possible to show. for example. that if RC' = B then

1. ((A+RY(A+BYL'B) C
Wy e = 0 /

o If RC' = B! and f is divergence-free. can use Ps as a
preconditioner for the Conjugate Gradient method. That is.
can use CG for an indefinite preconditioner with an indefinite
coeflicient matrix.

e Even better: if RC' = B! and f is not divergence-free. can use
P:1 as a preconditioner for CG.

e \Matrix-vector products with P; are not much more expensive
than with Ps.

e Potential limitation: need to know null-space of leading block
(at least approximately). want it ideally sparse.
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In Search of a Recipe

Suppose £ is a null matriz of B, namely BZ =0, and C' is a null
matriz of A. Then R = B'L7'B if and only if R satisfies the
conditions (i) RZ =0, (ii) RC = B", and (iii) R = R'.

An inf-sup like condition:

If R satisfies ||(A+ R)™'Rup| < a for a < 1 and up € ker(B).
then the eigenvalues \ of P, K., i = 1.2. satisfy
l—a< A<1+oa.

The condition RZ = 0 and its relaxed form primarily affect the
distribution of the eigenvalues. whereas the conditions RC' = B!
and R = R are needed in order to be able to potentially use CG.
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A Numerical Illustration:

Time-Harmonic Maxwell

The time-harmonic Maxwell equations with constant coefficients
in lossless media with perfectly conducting boundaries:
VxVxu—kiu+t+Vp={ in 2.
V-ou={p in {2
i XK=\ on o).

p = () on ).

i 1s an electric vector field: p is a scalar multiplier.

}? = w?ey. where w is the temporal frequency. and ¢ and s are
permittivity and permeability parameters.

Assume throughout small wave number: & < 1.

See Hiptmair. Monk....

(Preconditioners based on augmented Lagrangian approach.
Schotzau & G. [2006])
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Eigenvalues of Preconditioned Matrix
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Figure: Eigenvalue distribution of the preconditioned matrix Py I
for the time-harmonic Maxwell problem.




A Numerical Illustration:

Geophysical Inverse Problem

Thanks to Eldad Haber and Kristofer Davis.

min 3||P"u —d||fy, + 5l Lm|?
s.t. F(m)u+Gm = f.
where m is a model. L is a regularization operator (typically a

discretized second order differential operator). and the forward
problem F(m)u+ Gm = f is typically a second order differential

equation: (G is an averaging operator. P 1s an observation matrix.
and W, 1s the standard deviation.






